X always denotes a topological Hausdorff space, \mathbb{S}^n the n-sphere, and \mathbb{RP}^2 the real projective plane. Do any 6 problems.

- 1. Prove if X is compact and $A \subset X$ is closed then X/A is compact and Hausdorff.
- 2. Use the Urysohn Theorem to prove that if X is normal then X embedds into a product of closed unit intervals.
- 3. Prove if X is connected and locally path connected then X is path connected.
- 4. Let X be the one point union of \mathbb{S}^1 and a pinched torus: X = a) Compute $\pi_1(X)$.

- b) Compute $H_*(X)$.
- 5. a) Prove any map $\mathbb{RP}^2 \longrightarrow \mathbb{S}^1 \times \mathbb{S}^1$ is null homotopic. b) Prove there exists a map $\mathbb{S}^1 \times \mathbb{S}^1 \longrightarrow \mathbb{RP}^2$ which is not null homotopic.
- 6. Compute (up to homomorphism) all connected 2-fold coverings of the one point union of \mathbb{S}^1 and \mathbb{RP}^2 .
- 7. Prove if $\mathbb{S}^2 \xrightarrow{f} \mathbb{S}^2$ is a map without fixed points then there exists $x \in \mathbb{S}^2$ with f(x) = -x.
- 8. Find (up to homomorphism) all connected closed (ie. compact, without boundary, possibly non-orientable) 2-manifolds M for which every map $M \longrightarrow M$ has a fixed point. (This includes proving your answer is correct.)