Analysis Prelim Exam - August 2001

1. Suppose $K:[0,1]\times[0,1]\to\mathbb{R}$ is continuous. For any function f on [0,1] set

$$\mathcal{K}f(x) = \int_0^1 K(x,y)f(y)dy.$$

- a) If $f \in \mathcal{L}^p[0,1]$ for some $p \geq 1$, prove $\mathcal{K}f \in \mathcal{C}[0,1]$.
- b) If $\{f_n : n \geq 1\}$ is a Cauchy sequence in $\mathcal{L}^1[0,1]$, prove $\{\mathcal{K}f_n : n \geq 1\}$ is a Cauchy sequence in the supnorm of $\mathcal{C}[0,1]$.
- 2. Suppose $\{f_n: n \geq 1\}$ and $\{\frac{df_n}{dx}: n \geq 1\}$ are sequences in $\mathcal{C}[0,1]$. If $\{f_n: n \geq 1\}$ converges uniformly to f and $\{\frac{df_n}{dx}: n \geq 1\}$ converges uniformly to g, prove f is differentiable and $\frac{df}{dx} = g$.
- 3. Suppose f is a measurable function on \mathbb{R}^2 , both $\int_{-\infty}^{\infty} (\int_{-\infty}^{\infty} f(x,y)dx)dy$ and $\int_{-\infty}^{\infty} (\int_{-\infty}^{\infty} f(x,y)dy)dx$ exist and are finite, and $\{(x,y): f(x,y) \neq 0\}$ has nonzero measure.
 - a) If no additional conditions are given, construct an f such that

$$\int_{-\infty}^{\infty} (\int_{-\infty}^{\infty} f(x,y)dx)dy \neq \int_{-\infty}^{\infty} (\int_{-\infty}^{\infty} f(x,y)dy)dx.$$

- b) Give an additional condition on f that guarantees the two integrals are equal.
- 4. Let μ be an outer measure on \mathbb{R}^n . Prove open sets are measurable with respect to μ if and only if $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $\operatorname{dist}(A, B) > 0$.
- 5. Suppose p is a monotonically decreasing positive valued function on $[0, \infty)$, with $p(0) < \infty$. If $\lim_{x \to \infty} p(x) = 0$, prove

$$\lim_{R\to\infty}\int_0^R p(x)\cos\lambda x dx$$

exists for any $\lambda > 0$.

6. Evaluate $\int_{-\infty}^{\infty} \frac{\sin^3 x}{x^3} dx$. Verify all your steps.

In the following exercises $\Omega = \{z : |z| < 1\}$ and $H = \{z : Imz > 0\}$.

- 7. Construct a one to one conformal mapping of $\Omega \cap H$ onto Ω .
- 8. Let $\{f_n : n \geq 1\}$ be a sequence of holomorphic functions on Ω . Suppose $\{f_n : n \geq 1\}$ converges uniformly on compact subsets of Ω to a function f.
 - a) Prove f is holomorphic on Ω
 - b) If D is a closed disk in Ω and f is nowhere 0 on ∂D , then there is an N > 0 such that for all n > N # zeros of f in D = # of zeros of f_n in D.

- 9. Determine the Laurent expansion of $f(z) = \frac{1}{z(z-1)(z-2)}$ in each of the following regions:
- a) $\{z: 0 < |z| < 1\}$; b) $\{z: 1 < |z| < 2\}$; and c) $\{z: 2 < |z|\}$. 10. Let $u: \Omega \to \mathbb{R}$ be a C^2 -harmonic function. That is,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

Construct a real valued function v on Ω such that f = u + iv is holomorphic on Ω .