Topology Qualifying Exam, Fall 2002

- 1. The "line with two origins" is $X = (\mathbb{R} \{0\}) \cup \{0^+, 0^-\}$ with topology defined to consist of open sets in $\mathbb{R} \{0\}$ and of sets of the form $(U \setminus \{0\}) \cup \{0^+\} = U^+$ and $(U \setminus \{0\}) \cup \{0^-\} = U^-$ for $U \subset \mathbb{R}$ open and containing 0. Prove that this is indeed a topology, and that it is not metrizable.
- 2. Let $\{X_{\alpha} : \alpha \in \mathcal{A}\}$ be a family of sets such that the intersection of any two of them is nonempty. Prove that if X_{α} are connected subspaces of a space X, then their union $\bigcup_{\alpha} X_{\alpha}$ is a connected subspace of X.
- 3. Prove that a product of two compact spaces is compact.
- 4. Use van Kampen's theorem to compute the fundamental group of a compact orientable surface of genus 2.
- 5. Let X be the union of a torus $T = S^1 \times S^1$ and a disc D^2 , attached via the map $\phi: S^1 = \partial D^2 \to T$, $\phi(e^{i\theta}) = (e^{i\theta}, 1)$. Compute the homology $H_*(X)$ and the fundamental group $\pi_1(X)$. What is the universal cover \tilde{X} of X? What is the action of $\pi_1(X)$ on \tilde{X} ?
- 6. a.) Let Σ_2 be the orientable surface of genus 2. Suppose $\Sigma_g \xrightarrow{p} \Sigma_2$ is a 5-fold cover. What is g?
 - b.) If Σ is a genus 2 surface with the interior of a single disc removed and $\tilde{\Sigma}$ is a 3-fold cover of Σ , what can $\tilde{\Sigma}$ be?
- 7. Prove that any map $\mathbb{R}P^2 \to S^1 \times S^1$ is null homotopic. Prove that there exists a map $S^1 \times S^1 \to \mathbb{R}P^2$ which is not null-homotopic.
- 8. Show that the space of matrices $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d, \in \mathbb{R}, \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} > 0 \right\}$ is not contractible.