Ph.D. Comprehensive Examination on Algebra

Fall 2003

You have three hours to complete this exam. Please write your solutions in a clear and concise fashion.

1. Suppose R is a commutative ring with identity where $1_{R} \neq 0$. Prove that the following are equivalent.
(i) R is a field;
(ii) R has no proper ideals;
(iii) 0 is a maximal ideal in R;
(iv) every nonzero homomorphism of rings $R \rightarrow S$ is a monomorphism.
2. State the three Sylow theorems. Prove that there are no simple groups of order 36 .
3. Compute the Galois group of $x^{4}+1$ over \mathbb{Q}.
4. Let A be a symmetric real $n \times n$ matrix. Show that all the eigenvalues of A must be real and that the eigenvectors corresponding to the different eigenvectors are orthogonal.
5. Determine the Jordan canonical form of the following matrix:

$$
\left(\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 0 \\
-4 & 3 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

6. Prove that every group of order $p^{2} q$ where p and q are primes is solvable.
7. Let K be a field. Prove that the polynomial ring $K[x]$ is a principal ideal domain.
8. Let R be a ring and $f: M \rightarrow N$ and $g: N \rightarrow M$ be R-module homomorphisms such that $g \circ f=\operatorname{id}_{M}$. Show that $N \cong \operatorname{Im} f \oplus \operatorname{Ker} g$.
