Ph.D. Comprehensive Examination on Algebra

Fall 2003

You have three hours to complete this exam. Please write your solutions in a clear and concise fashion.

- 1. Suppose R is a commutative ring with identity where $1_R \neq 0$. Prove that the following are equivalent.
 - (i) R is a field;
 - (ii) R has no proper ideals;
 - (iii) 0 is a maximal ideal in R;
 - (iv) every nonzero homomorphism of rings $R \to S$ is a monomorphism.
- 2. State the three Sylow theorems. Prove that there are no simple groups of order 36.
- 3. Compute the Galois group of $x^4 + 1$ over \mathbb{Q} .
- 4. Let A be a symmetric real $n \times n$ matrix. Show that all the eigenvalues of A must be real and that the eigenvectors corresponding to the different eigenvectors are orthogonal.
- 5. Determine the Jordan canonical form of the following matrix:

- 6. Prove that every group of order p^2q where p and q are primes is solvable.
- 7. Let K be a field. Prove that the polynomial ring K[x] is a principal ideal domain.
- 8. Let R be a ring and $f: M \to N$ and $g: N \to M$ be R-module homomorphisms such that $g \circ f = \mathrm{id}_M$. Show that $N \cong \mathrm{Im} f \oplus \mathrm{Ker} g$.