Ph.D. Prelim: Probability Theory, August 2004

1. Show that random variables $\{X_n\}$ and X satisfy $X_n \to X$ in distribution iff

$$E[F(X_n)] \to E[F(X)]$$

for every continuous distribution function F.

2. Let $\{X_n\}$ be iid random variables, $E|X_1| < \infty$, and denote $S_n = X_1 + \cdots + X_n$. Prove that

$$E[X_1|S_n, S_{n+1}, \dots] = \frac{S_n}{n}$$
 a.s.

3. Prove for iid random variables $\{X_n\}$ with $S_n = X_1 + \cdots + X_n$ that

$$\frac{S_n - C_n}{n} \to 0$$
 a.s.

for some sequence of constants C_n if and only if $E|X_1| < \infty$.

4. Let $\{X_n\}$ be iid random variables with $E|X_1| < \infty$. Show that

$$\lim_{n \to \infty} \frac{1}{n} E(\max_{1 \le k \le n} |X_k|) = 0.$$

- 5. (a) Quote without proof the Lindeberg-Feller CLT.
 - (b) Show that for the sequence $\{X_n\}$ of independent random variables with

$$P(X_n = n) = P(X_n = -n) = \frac{1}{2},$$

the CLT holds.

6. If $\{X_n\}$ iid, $EX_1 = 0$, $E(|X_1|\log^+|X_1|) < \infty$, then $\sum X_n/n$ converges a.s.