Qualifying Examination of Numerical Analysis, 2005

Name_____Student Id. No._____

Instruction: The following are ten problems in total. Please start each problem on a separate sheet of paper, write on only one side of the paper, and number each page. The time limit on this exam is three hours.

- [1] Suppose that a square matrix A is strictly diagonally dominant. Show that when applying Gauss-Jacob iteration to solve Ax = b, the iteration converges.
- [2] Let A be an invertible matrix and \tilde{A} be a perturbation of A satisfying $||A^{-1}|| \, ||A \tilde{A}|| < 1$. Suppose that x and \tilde{x} are the exact solutions of Ax = b and $\tilde{A}\tilde{x} = \tilde{b}$, respectively. Show that

$$\frac{\|x-\tilde{x}\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1-\operatorname{cond}(A)\frac{\|A-\tilde{A}\|}{\|A\|}} \left[\frac{\|A-\tilde{A}\|}{\|A\|} + \frac{\|b-\tilde{b}\|}{\|b\|} \right].$$

[3] Let U, Σ, V be the singular value decomposition (SVD) of A. Let

$$A^+ = V \Sigma^+ U^T$$

be the pseudo inverse of A, where $\Sigma^+ = \operatorname{diag}(\frac{1}{\sigma_1}, \frac{1}{\sigma_2}, \dots, \frac{1}{\sigma_r}, 0, \dots, 0)$ and r stands for the rank of A. Show that

$$AA^{+}A = A \text{ and } (A^{+}A)^{T} = A^{+}A.$$

- [4] Let x and y be two vectors in \mathbb{R}^2 . Suppose that $||x||_2 = ||y||_2$. Show that there exists a unitary matrix H such that Hx = y.
- [5] Suppose that p is a root of multiplicity m > 1 of f(x) = 0. Show that the following modified Newton's method

$$p_{n+1} = p_n - \frac{mf(p_n)}{f'(p_n)}$$

gives quadratical convergence.

[6] Show that the fourth order finite difference of f approximates $f^{(4)}$ at the order $O(h^2)$; i.e.,

$$\frac{f(a_4) - 4f(a_3) + 6f(a_2) - 4f(a_1) + f(a_0)}{h^4} - f^{(4)}(a_2) = \frac{h^2}{6}f^{(6)}(\xi)$$

for some $\xi \in [a_0, a_4]$, where $a_i = a + ih, i = 0, \dots, 4$.

[7] Suppose that $f \in C^4[a, b]$. Prove the following error estimate for the Simpson rule.

$$\int_{a}^{b} f(x)dx - \frac{(b-a)}{6}(f(a) + 4f(\frac{a+b}{2}) + f(b)) = -\frac{(b-a)^{5}}{2880}f^{(4)}(\xi)$$

for some $\xi \in [a, b]$.

[8] Let $h_n = (b-a)/n$. Denote by

$$T_n = \frac{h_n}{2} (f(a) + 2 \sum_{k=1}^{n-1} f(a + kh_n) + f(b))$$

the compound Trapezoidal rule and by

$$S_n = \frac{h_n}{6} (f(a) + 4 \sum_{k=1}^{n-1} f(a + (k + \frac{1}{2})h_n) + 2 \sum_{k=1}^{n-1} f(a + kh_n) + f(b))$$

the compound Simpson rule. Show that

$$S_n = \frac{4T_{2n} - T_n}{4 - 1}.$$

[9] Let $\triangle := \{x_0, \dots, x_{n+1}\}$ be a partition of [a, b], i.e, $a = x_0 < x_1 < \dots < x_n < x_{n+1} = b$. Let $S_3^2(\triangle)$ be the space of all C^2 cubic spline functions. That is, for any $s \in S_3^2(\triangle)$, $s \in C^2[a, b]$ and $s|_{[x_i, x_{i+1}]}$ is a cubic polynomial, $i = 0, \dots, n$. For any $f \in C^1[a, b]$, let S_f be the C^2 cubic interpolatory spline of f, i.e., $S_f \in S_3^2(\triangle)$ and

$$S_f(x_i) = f(x_i), i = 0, 1, \dots, n+1, S'_f(a) = f'(a), S'_f(b) = f'(b).$$

Suppose that $f \in C^2[a, b]$. Show that

$$\int_{a}^{b} \left| \frac{d^{2}}{dx^{2}} \left(f(x) - S_{f}(x) \right) \right|^{2} dx \le \int_{a}^{b} \left| \frac{d^{2}}{dx^{2}} \left(f(x) - s(x) \right) \right|^{2} dx$$

for any $s \in S_3^2(\triangle)$.

[10] Consider solving the following initial value problem of ODE numerically.

$$\begin{cases} y'(x) = f(x, y(x)), & a \le x \le b \\ y(a) = \alpha, \end{cases}$$

Derive the Runge-Kutta method of Order 3: $h=(b-a)/n, y_0=\alpha$ and for $k=0,\cdots,n-1,$ compute

$$K_1 = f(x_k, y_k)$$

$$K_2 = f(x_k + \frac{h}{2}, y_k + \frac{h}{2}K_1)$$

$$K_3 = f(x_{k+1}, y_k - hK_1 + 2hK_2)$$

$$y_{k+1} = y_k + \frac{h}{6}(K_1 + 4K_2 + K_3).$$