Topology Prelim

- 1. Prove that a continuous bijection from a compact space to a Hausdorff space is a homeomorphism.
- 2. Let X and Y be topological spaces. Do one of the following.
 - (a) Prove if X and Y are path connected then $X \times Y$ is path connected.
 - (b) Prove if X and Y are compact then $X \times Y$ is compact.
- 3. Let A be a closed subspace of the regular Hausdorff space X and $X \xrightarrow{p} X/\sim$ be the natural projection where \sim is the equivalence relation defined by $a \sim b$ if a and b are elements of A. Prove X/\sim is Hausdorff if the topology on X/\sim is the quotient topology induced from p.
- 4. Classify all covering spaces of $P \times P$ where P is a 2-dimensional real projective space.
- 5. Let X be homeomorphic to a 2-dimensional sphere, Y be homeomorphic to a 2-dimensional torus, and Z be the one point union of X and Y.
 - (a) Compute the fundamental group of Z.
 - (b) Compute $H_*(Z, \mathbb{Z})$.
- 6. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ and f the induced map on the 2-dimensional torus T making the

$$\mathbb{R}^2 \xrightarrow{A} \mathbb{R}^2$$

diagram

$$\downarrow_p \qquad \qquad \downarrow_p \quad \text{commute, where } p(x,y) = (e^{2\pi i x}, e^{2\pi i y}) \text{ is the natural}$$

$$T \xrightarrow{f} T$$

universal covering map of $T = S^1 \times S^1$.

- (a) Prove f is a homeomorphism.
- (b) Prove or disprove: f has a fixed point.
- 7. Prove there does not exist a retraction of the 3-dimensional sphere S^3 onto a subspace that is homeomorphic to a closed connected 2-manifold.
- 8. Prove there does not exist a continuous map $S^n \xrightarrow{f} S^{n-1}$ such that f(-x) = f(x) for all $x \in S^n$ where $S^n \subseteq \mathbb{R}^{n+1}$ is the unit sphere and $n \ge 1$.