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Problem 1. What is the smallest number such that, if you write it in base 10, moving
the rightmost digit to the leftmost position is the same as multiplying it by 47

Answer. 102,564

Solution. Let’s answer a more general family of questions here: what is the smallest
number such that, when you move the rightmost digit to the leftmost position, you
get the original number multiplied by N7 Here, we tackle N = 5,4, 7. In particular
the case N = 4 is the original problem.

Case N =5

The case N = 5 is well-known, but it’s good to show its solution here. Let x be this
number, k the number of digits it has, and a its ones digit. Then we get the equation

r —a

10

a- 10571 + = bz,

which simplifies, after some algebra, to
49z = a(10F — 1).

Since a < 9, there is at most one factor of 7 we can get from a, so we need 10¥ — 1 to
be a multiple of 7. Fermat’s little theorem then gives us that to satisfy this condition,
we want k to be a factor of 6, meaning the least k is either 1,2,3, or 6. As it turns
out, 10 — 1, 102 — 1, and 10® — 1 are not multiples of 7, but 10 — 1 is.

To keep computations small, we reduce everything mod 7 and ask: when is 10*,
equivalently 3%, congruent to 1 mod 7? The sequence of residues is easy to compute:

3,2,6,4,5, 1.
So you really need to go all the way to k = 6.

However, 10° — 1 is not divisible by 49, because (10° — 1)/7 = 142,857, which is
one off from a multiple of 7. So either we make k larger, or we take our other factor
of 7 from a. Making k larger would multiply x by a factor of at least 10 (in fact,
if you know the Lifting the Exponent Lemma, you know it gets much larger—you’d
need to add a factor of 7 to the exponent of 10), so you might as well just put that
factor of 7 into a, meaning a = 7. Setting a = 7, k = 6 gives us

7(106 —1)  10°—1
= o = e = 142,857,
Indeed, 714,285 = 142,857 x 5.




Case N =4
For the original problem, which is the case N = 4. Repeating the above, we get

39z = a(10F — 1).

As it turns out, there is no need for a to be divisible by 3, because 10¥ — 1 is already
always divisible by 3. So we only require 10¥ — 1 to be a multiple of 13. As before, k
should be at least 6, and indeed k£ = 6 works. We get

a(10% —1)
= —— = 25,641a.
T o 641a

Since x should have at least 6 digits, a = 4 works, giving x = 102,564. Indeed!,
410,256 = 102,564 x 4.

Case N =7
Finally, the case N = 7. We get

69z = a(10F — 1).

Since 10 — 1 is always divisible by 3, we ask only that it be divisible by 23 as well.
As before, we need only check k = 1,2,11,22. Clearly both 1 and 2 fail. To check
that 11 fails, the slick way is to use Euler’s criterion and Legendre symbols (quadratic
reciprocity); however, barring that, you can just keep multiplying by 10 mod 23:

102=8, 10°=8=18, 10°=182=(-5)2?=2 (mod 23).

Then 10 = 108?11 =2.8-.10 = 160 = —1 (mod 23). So we need k = 22.

Even after this, we get
a(10%2 —1)

rT=——",

69
and the smallest value of a giving a 22-digit number is a = 7, yielding

x = 1014492753623188405797.

Indeed,
7 x 1014492753623188405797 = 7101449275362318840579.

If we forbid any zeros, the problem becomes even harder. A more tractable version
might just ask for the number of digits.

'If we demand that z have no zero digits, then a = 6 is still the correct answer, because both
a = 4 and a = 5 fail this condition.



Finally, there’s a more hands-on way to approach this question without the number-
theoretic machinery—ironically, easiest for the N = 7 case. Clearly x must start with

a 1. So suppose we have
1...a.

We know from above that a = 7 works, but suppose we didn’t. Try it and see
what happens: moving the 7 to the left gives 71.... Since 71/7 = 10 remainder 1,
the digit to the right of 1 must be 0, so our number is 10...7, and 7 times that
number is 710. ... Dividing again, 710/7 = 101 remainder 3, so the next digit must
be 1 because our number would then be 7101.... We continue this process until the
remainder becomes 0. If it ever failed, we'd know—Dbut it doesn’t.

Problem 2. Let N be the smallest positive multiple of 2025 whose decimal digits
add up to 2025. Find the sum of the distinct decimal digits of N.

Answer. 29

Solution. The smallest such N is equal to 79899999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999975, or

N =8-10%° — 10%*3 — 25.

Hence, the distinct decimal digits in N add up to 7+ 9 + 8 +5 = 29.

Since each digit is at most 9, certainly N has at least 2025/9 = 225 decimal digits.
Furthermore, N cannot have exactly 225 digits: that would require N to consist of
225 9s, i.e., N = 10?* — 1. But that N is not divisible by 5, and so certainly not
divisible by 2025. Thus, NV has at least 226 decimal digits.

We now consider candidate N values with precisely 226 digits. Since N is a
multiple of 25, the final two digits of N are either 00, 25, 50, or 75. Let S denote the
sum of these last two digits, and let ¢ denote the leading digit of N. Then the sum
of the digits of N is at most S + ¢ + 223 - 9, and so

S+0+4223-9 > 2025.

Hence,
S+¢>18.

Since ¢ < 9, it must be that S > 9. This forces the last two digits of N to be 75, so
that S =12 and ¢ > 6.

Suppose £ = 6. Since S = 12 and the sum of the digits of N is 2025, the 223 digits
between the leading 6 and the ending 75 must all be 9. That is, N = 699 ---975, or

equivalently
N =7-10% — 25.



However, this IV is not divisible by 81, and hence is not divisible by 2025 = 81 - 25.
To see this, we use that 10 has multiplicative order 9 modulo 81 (as can be verified
by a straightforward calculation). Since 9 | 225, it follows that 10*° = 1 (mod 81).
Thus, modulo 81,

71022 —25=7-1-25
= —18
£ 0.

Hence, our leading digit £ > 7. If £ = 7, then the 223 digits between the leading
7 and the ending 75 are all 9, with a single exception which is equal to 8. In other

words,
N =8-10** — 10" — 25

for some r with 2 < r < 224. Each N of this form is divisible by 25, and so N will be
divisible by 2025 = 25 - 81 precisely when N is divisible by 81. Working modulo 81,

N =8-10*° - 10" — 25
=8—10"— 25
=—17-10"
=64 — 10"

Thus, N is divisible by 2025 precisely when 10" = 64 (mod 81). Since 8- 10 = —1
(mod 81), we have 8- 10?2 =1 (mod 81). But we have observed already that 10 has
order 9 mod 81, and hence 107 - 10> = 1 (mod 81). Thus, 107 = 8% = 64 (mod 81),
and 10" = 64 (mod 81) precisely when » = 7 (mod 9). To make the number N above
as small as possible, we make r as large as posible. The largest r < 224 with r =7
(mod 9) is r = 223. Hence, N = 8- 10?% — 10?23 — 25.

Problem 3. If you pick a point on an (infinite) cylinder, it always lies on a line
contained in that cylinder. This is not true if you take a point on the surface S
described by the equation

ryz+r+y+z2=0

as it only contains finitely many lines. However some points lie on more than one
line. How many such points are there?

Answer. 13

Solution. Notice that if we let x = 0, the equation above reduces to y+ z = 0, which
gives us our first line,
L, :(0,t, —t).



In the same vein, we get the lines L, : (¢,0,—t) and L, : (¢,—t,0).
Assume now that x = 1, the equation above becomes yz+y+z+1 = (y+1)(z+1) =0
whence we get two new lines

Ly :(1,—1,%)

and
L. :(1,t,—1).

Mutatis mutandis, we obtain four other lines: L,, : (—1,1,t), L, : (¢, 1,—1),
L., :(-1,¢t,1)and L,, : (t,—1,1).

These lines are represented below.

These are the only lines on S; indeed, consider a generic line (a+ at, b+ St, c+7t)
included on this surface, all points on the line must satify the equation of S:

(a+at)(b+ St)(c+t)+ (a+at)+ (b+Pt) +(c+7t) =0
which after rearranging the terms, becomes
abc+a+b+c+ (aby + aBec + bac+ a + B+ ) t+ (aBy + bay + afc) t* +afyt® = 0.

This expression must be true for all £ hence all coefficients of this cubic polynomial
must be identically 0. In particular, from the cubic coefficient, it implies that one of
a, B or v must be null. Without loss of generality, let’s assume that & = 0 and the
last equation simplifies to

0=abc+a+b+c+ (aby +afc+ B+7)t + (afy) 2.

Looking at the term of degree 2, we now have two options: either a = 0 or, 5 or
v is 0. If a = 0, the equation further reduces to

O=b+c+ (B+)t=0
ie. y+ 2 =0. If say, § = 0, the equation reduces to

O0=abc+a+b+c+ (ab+ 1)yt



Now, 7 can’t equal 0 or our line would degenerate to a point so we must have ab+1 = 0.
This constraint and abc +a +b+c = 0 reduce to a + b = 0 and —a® +1 = 0, i.e.
a = —b= =1, i.e. the lines (1,—1,¢) and (—1,1,¢). By symmetry, we get the other
four lines.

We now have to find the points of intersection of these nine lines. By observation,
we get the following pairs of intersecting lines: L,, Ly. where a, b and ¢ are distinct;
Lay, Lo where a, b and c are distinct; L., Ly. where a, b and ¢ are distinct. Finally,
all L,’s, for a = x,y, z pass through the origin. All in all, these are 6 + 6 + 1 = 13
points of intersection.

These lines and points of intersection are represented below.

Fun fact: this surface is often called the Cayley cubic. Cubic surfaces have at
most 27 lines on them. This is only the tip of a fascinating iceberg.
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