PRELIMINARY EXAMINATION IN TOPOLOGY

MAY 8, 1992

Directions: Do all the problems. Problems #1-6 are each worth 10 points; #7 and #8 are each worth 20 points.

1. Give a self-contained proof of the following:

Let X be a compact metric space. Given any open covering $\mathcal U$ of X, prove that there is a real number $\epsilon > 0$ so that for each $x \in X$, there is $U \in \mathcal{U}$ such that $B(x, \epsilon) \subset U$.

- a. Prove that if Y is a retract of the Hausdorff space Z, then Y is a closed subspace
 - b. Let J be an arbitrary set; endow $Z = \prod_{j \in J} \mathbf{R}$ with the product topology. Prove that if Y is a retract of Z, then for every normal topological space X, closed subspace $A \subset X$ and continuous function $f:A \to Y$, there exists a continuous extension $\tilde{f}: X \to Y$.
- 3. Let X be the set of real numbers endowed with the topology generated by basis elements $(a,b),\ a,b\in\mathbb{R},\ a< b.$ Let R denote the set of real numbers endowed with the standard topology.
 - a. Classify all continuous functions $f: \mathbb{R} \to X$.
 - b. Classify all continuous functions $f: X \to \mathbb{R}$.
- 4. Prove or give a counterexample in each case: If X is a contractible space, then
 - a. X is simply connected.
 - b. X is locally simply connected at each point $x \in X$.
- 5. Let $D^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, and let $S^{n-1} = \partial D^n = \{x \in \mathbb{R}^n : |x| = 1\}$. Suppose $f:D^n\to\mathbb{R}^n$ is continuous and satisfies |f(x)-x|<1 for all $x\in S^{n-1}$. Prove that $0 \in f(D^n)$.
- 6. View the torus T as the quotient space $\mathbb{R}^2/\mathbb{Z}^2$, so we have the obvious covering map $\pi: \mathbb{R}^2 \to T$. The matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ defines a linear map from \mathbb{R}^2 to \mathbb{R}^2 .
 - a. Prove briefly that this linear map induces a continuous map $f: T \to T$.
 - b. Prove or disprove: f is homotopic to the identity map.

7. Let S^2 , $S^{2\prime}$ be two copies of the two-sphere, and let $p,q \in S^2$, $p',q' \in S^{2\prime}$ be pairs of points in the respective copies. Define

$$X = S^2 \cup S^{2'} / (p \sim p', q \sim q').$$

- a. Give the universal covering space of X.
- b. Using Van Kampen's Theorem, compute $\pi_1(X)$ and relate your answer to your answer to a.
- c. Compute $H_{\bullet}(X, \mathbb{Z})$ by any method you desire. Give details.
- a. Define the Lefschetz number L(f) of a continuous map $f: X \to X$.
 - b. Let $f: \mathbb{RP}^2 \to \mathbb{RP}^2$ be continuous. Give (with proof) necessary and sufficient conditions for f to have a fixed point.
 - c. Let K be a simplicial complex. State and sketch a proof of the Lefschetz fixed point theorem for a continuous map $f:|K|\to |K|$.