Topology Prelim

1. Let X be the subset of \mathbb{R}^2 shown below. Is X contractible?

- 2. Let X and Y be metric spaces and let $f: X \times I \longrightarrow Y$ be a homotopy. Define D(t), the diameter at time t, to be $\sup_{a,b \in X} \{d_Y(f(a,t),f(b,t))\},$
 - a) Show that if X is compact then D is continuous.
 - b) Show that if we only assume Y is compact then D may not be continuous.
- 3. Define an equivalence relation on \mathbb{R} by $x \sim y$ iff $x y \in \mathbb{Q}$. Let \mathbb{R}/\mathbb{Q} be the set of equivalence classes and give \mathbb{R}/\mathbb{Q} the quotient topology with respect to the natural map $\mathbb{R} \longrightarrow \mathbb{R}/\mathbb{Q}$. Is \mathbb{R}/\mathbb{Q} compact? Is \mathbb{R}/\mathbb{Q} Hausdorff?
- 4. Compute the homology groups of X where X is the "half-solid" surface of genus 2, i.e.
- 5. Prove or disprove: every map $f: \mathbb{R}P^2 \longrightarrow \mathbb{R}P^2$ has a fixed point.
- 6. Define the natural map $\pi_1(X,*) \longrightarrow H_1(X)$. Show that it can have a kernel.
- 7. Show that there is a map $f: S^1 \times S^1 \to S^2$ of degree 2, that is, such that $f_*: H_2(S^1 \times S^1) \longrightarrow H_2(S^2)$ maps a generator to twice a generator.
- 8. Show that there is a space X with $\pi_1(X,*) = \mathbb{Z}_n$.
- 9. Let $p:(\tilde{X},\tilde{x}_0)\longrightarrow (X,x_0)$ be a convering map and let $f:(Y,y_0)\longrightarrow (X,x_0)$ be a map. Assume Y is path-connected and locally path-connected. State and prove necessary and sufficient conditions for the existence of a map $\tilde{f}:(Y,y_0)\longrightarrow (\tilde{X},\tilde{x}_0)$ satisfying $p\circ \tilde{f}=f$.