Numerical Analysis Qualifying Examination

Spring, 2007

Name_____

Instruction: Among the following 9 problems, please do 8 of them. Please start each problem on a separate sheet of paper, write on only one side of the paper, and number each page. The time limit on this exam is three hours.

- [1] Suppose that a square matrix A is strictly diagonally dominant. Show that when applying the Gaussian elimination procedure with partial pivoting to A, no partial pivoting is needed.
- [2] Suppose that a square matrix A is strictly diagonally dominant. Show that when applying Gauss-Seidel iteration to solve Ax = b, the iteration converges.
- [3] Let $\widetilde{A} = A + E$ be a perturbation matrix of A. Show that

$$||A^{+} - \widetilde{A}^{+}||_{2} \le ||E||_{2} \left(||A^{+}||_{2} ||\widetilde{A}||_{2} + ||A^{+}||_{2}^{2} + ||\widetilde{A}^{+}||_{2}^{2} \right)$$

where A^+ and \widetilde{A}^+ denote the pseudo inverses of A and \widetilde{A} , respectively.

- [4] Let A be a tridiagonal matrix. Write A = QR with R being upper triangular matrix and Q an orthonormal matrix. Show that RQ is also a tridiagonal matrix.
- [5] Use the Steepest Descent Method to solve

$$g(\mathbf{x}^*) = \min_{\mathbf{x} \in \mathbf{R}^n} g(\mathbf{x})$$

where $g(\mathbf{x}) = \frac{1}{2}\mathbf{x}^t A \mathbf{x} - \mathbf{x}^t \mathbf{b}$, n = 3, and

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

Start with $\mathbf{x}^0 = (0, 0, 0)^t$ and perform three iterations of the Steepest Descent Method.

[6] Suppose that $f \in C^2[a,b]$. Prove the following error for the midpoint rule:

$$\int_{a}^{b} f(x)dx - (b-a)f(\frac{a+b}{2}) = \frac{(b-a)^{3}}{24}f''(\xi)$$

for some $\xi \in [a, b]$.

[7] Let $G_n(f) := \sum_{k=1}^n f(x_{n,i})c_{n,i}$ be the n^{th} Gaussian quadrature formula over the interval [a,b], where $x_{n,i}, i=1,\cdots,n$ are zeros of the orthogonal polynomial ϕ_n of degree n and

$$c_{n,i} = \int_a^b \prod_{\substack{j \neq i \ j=1,\dots,n}} \frac{(x - x_{n,j})}{(x_{n,i} - x_{n,j})} dx.$$

Show that $c_{n,i} > 0$ for all i.

[8] Let $\triangle := \{x_0, \dots, x_{n+1}\}$ be a partition of [a, b], i.e, $a = x_0 < x_1 < \dots < x_n < x_{n+1} = b$. Let $S_3^1(\triangle)$ be the space of all C^1 cubic spline functions. That is, for any $s \in S_3^1(\triangle)$, $s \in C^1[a, b]$ and $s|_{[x_i, x_{i+1}]}$ is a cubic polynomial, $i = 0, \dots, n$. For any $f \in C^1[a, b]$, let S_f be the C^1 cubic interpolatory spline of f, i.e., $S_f \in S_3^1(\triangle)$ and

$$S_f(x_i) = f(x_i), S'_f(x_i) = f'(x_i), i = 0, 1, \dots, n+1.$$

Suppose that $f \in C^2[a, b]$. Show that

$$\int_{a}^{b} \left| \frac{d^{2}}{dx^{2}} (f(x) - S_{f}(x)) \right|^{2} dx \le \int_{a}^{b} \left| \frac{d^{2}}{dx^{2}} (f(x) - s(x)) \right|^{2} dx$$

for any $s \in S_3^1(\triangle)$.

[9] Consider solving the following initial value problem numerically.

$$\begin{cases} y'(x) = f(x, y(x)), & a \le x \le b. \\ y(a) = \alpha, \end{cases}$$

Verify the following Taylor method of order 2: $h=(b-a)/n, y_0=\alpha$ and for $k=0,\cdots,n-1,$

$$y_{k+1} = y_k + hf(x_k, y_k) + \frac{h^2}{2}f_x(x_k, y_k) + \frac{h^2}{2}f_y(x_k, y_k)f(x_k, y_k).$$