Study Guide for Real Analysis Exam

Undergraduate Analysis

Continuity and differentiation in one real variable Metric spaces and compactness in analysis Sequences and series Uniform convergence and uniform continuity Taylor's theorem Weierstrass approximation theorem

References: [2] Chapters 2, 3, 4, 5, 7; [1] Sections 0.6.

Measure and Integration

Measures on \mathbb{R}^n and on σ -algebras Measurable and integrable functions Convergence theorems: Fatou's lemma, the monotone and dominated convergence theorems and Egoroff's theorem Notions of convergence: uniform, pointwise, almost everywhere, and in norm Fubini and Tonelli theorems

References: [1] Chapters 1, 2; [3] Chapters 1, 2, 6.

Function Spaces

The Banach spaces L^1 and L^∞ : Completeness Convolutions and approximations to the identity Linear functionals and realizing L^∞ as the dual of L^1 Hilbert space and L^2 spaces: Schwarz inequality and orthogonality Linear functionals and the Riesz representation theorem Bessel's inequality, orthonormal basis, and Parseval's identity Trigonometric series: trigonometric polymonials are dense in both C([0,1]) (with respect to the uniform metric) and in $L^2([0,1])$

References: [1] Sections 5.2, 5.5, 6.2; [3] Chapter 4.

References

[1] G. B. Folland, Real Analysis, 2nd edition, John Wiley & Sons, Inc.

[2] W. Rudin, Principles of Mathematical Analysis, 3rd edition, Macmillan.

[3] E. M. Stein and R. Shakarchi, *Real Analysis*, Princeton University Press.