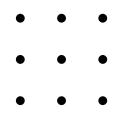
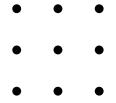
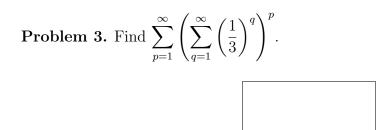

Problem 1. In a recent football game, team A had three times as many points as team B. B then scored another touchdown (7 points), after which A had twice as many points as B. What was the combined score of the two teams after that touchdown?

-	


Problem 1. In a recent football game, team A had three times as many points as team B. B then scored another touchdown (7 points), after which A had twice as many points as B. What was the combined score of the two teams after that touchdown?


Problem 2. What is the maximum number of dots you can choose from a 3 by 3 grid of dots, if no 3 of the chosen dots can be in the same row, the same column, or the same diagonal?





Problem 4. How many 1s are in the base 2 expansion of the number whose base 8 expansion is 2017?

Problem 4. How many 1s are in the base 2 expansion of the number whose base 8 expansion is 2017?

Problem 5. How many ordered pairs of positive integers (x, y) satisfy $x + y \le 100$?

Problem 5. How many ordered pairs of positive integers (x, y) satisfy $x + y \le 100$?

Problem 6. What is the largest number of lines you can draw through (0,0) in the *xy*-plane with the property that the angle between any two of them is the same?

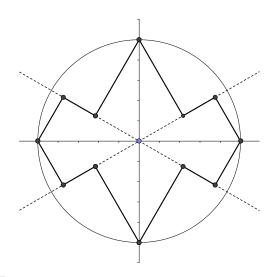
Problem 6. What is the largest number of lines you can draw through (0,0) in the *xy*-plane with the property that the angle between any two of them is the same?

Problem 7. How many of the coefficients of $(2x + \frac{1}{2}y)^8$ are integers, after simplifying?

Problem 7. How many of the coefficients of $(2x + \frac{1}{2}y)^8$ are integers, after simplifying?

Problem 8. What is the length of the shortest path in the xy-plane that starts at (1, 1), touches the x-axis, and ends at (2, 2)?

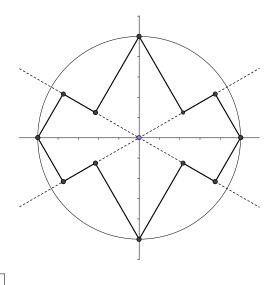
Problem 8. What is the length of the shortest path in the xy-plane that starts at (1, 1), touches the x-axis, and ends at (2, 2)?


Problem 9. If x and y are positive integers satisfying $\ln(x+y) = \ln(x) + \ln(y)$, what is $x^2 + y^2$?

Problem 9. If x and y are positive integers satisfying $\ln(x+y) = \ln(x) + \ln(y)$, what is $x^2 + y^2$?

-		

Problem 10. Start with a circle of radius 1 centered at (0,0). Draw two lines making an angle of 30° with the *x*-axis. Drop perpendiculars from these lines to the points $(\pm 1, 0)$ and $(0, \pm 1)$. Join the perpendiculars along the 30° lines to form a closed polygon.


What is the perimeter of this polygon?

Problem 10. Start with a circle of radius 1 centered at (0,0). Draw two lines making an angle of 30° with the *x*-axis. Drop perpendiculars from these lines to the points $(\pm 1, 0)$ and $(0, \pm 1)$. Join the perpendiculars along the 30° lines to form a closed polygon.

What is the perimeter of this polygon?

