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WITH SOLUTIONS

No calculators are allowed on this test. You do not have to provide
proofs; only the answers matter. Each problem is worth 70 points, for a total
of 210 points.

Problem 1 (Prüfer Airlines). In a certain small European country there
are only 5 cities. An airline decides to connect them by 4 (two-way) connec-
tions, so that it would be possible to fly from any city to any other, possibly
with stops.

(a) (35 points) In how many ways is it possible to do this?
(b) (35 points) Same question but for 6 cities and 5 connections.

Answer. (a) 125 = 53, (b) 1296 = 64

Solution. (a) Draw five vertices, label them by writing numbers 1 through 5,
and then draw the 4 connections. What you get is called a tree in mathemat-
ics, a connected graph which has no cycles. For 5 vertices, the possibilities
for the trees are given in the picture below.

For each of these pictures, we need to count the ways we can label the
vertices with numbers 1 through 5.



For the first graph, there are 5 ways: 5 choices for the central vertex, after
that we get the same result up to symmetries. For the second tree, there are

5 · 4 · 3 = 60 ways. And for the third three, there are
5!

2
= 60 ways, for a

total of 125.
(b) Similarly, for the case of 6 vertices, the possible pictures are given in

the next picture.

Counting them, we get

6 +
6!

3!
+

6!

8
+

6!

2
+

6!

2
+

6!

2
=

6 + 120 + 90 + 360 + 360 + 360 = 1296

(For each tree, the number of ways is 6! divided by the number of symmetries
of that tree.)

The general formula for n vertices is nn−2. This is a famous theorem
of Cayley from 1889. The easiest and most beautiful way to prove it is us-
ing Prüfer sequences (http://en.wikipedia.org/wiki/Prufer_sequence).
One shows that every labeled tree can be uniquely encoded by a sequence of
numbers 1 through n of length n − 2, with repetitions allowed. Of course,
there are nn−2 such sequences.

For the details of the encoding and decoding procedures, see for example
http://www.proofwiki.org/wiki/Prufer_Sequence_from_Labeled_Tree,
http://www.proofwiki.org/wiki/Labeled_Tree_from_Prufer_Sequence.

Problem 2 (Let’s be friends). One hundred (100) people go through the
following procedure. One-by-one, they each randomly point at a person who

http://en.wikipedia.org/wiki/Prufer_sequence
http://www.proofwiki.org/wiki/Prufer_Sequence_from_Labeled_Tree
http://www.proofwiki.org/wiki/Labeled_Tree_from_Prufer_Sequence


is not yet pointed at. A person may point at himself, so for example, the
first person points at himself with probability 1%.

What is the probability that after this procedure there exist 75 people
P1, P2, . . . , P75 so that person P1 points at P2, person P2 points at P3, . . . ,
person P74 points at P75, and finally person P75 points at P1?

Answer. 1
75

Solution. The procedure given corresponds to choosing a random permu-
tation of 100 elements, and the question is whether or not this permutation
contains a 75-cycle.

Overall, there are 100! permutations. Let’s count how many of them
contain a 75-cycle. First of all, there is at most one 75-cycle. There are

(
100
75

)
different ways of choosing which 75 people comprise the cycle, 74! different
ways of choosing the order of the cycle, and 25! different ways of choosing
what the other 25 people do. (It seems like there might be 75! different
orders, but two orders are equivalent if you “rotate the cycle” in one of the
75 ways.) Thus the overall probability is(

100

75

)
74!25!

100!
=

1

75
.

Generalization. The proof above applies for any cycle length greater than
50, but not for smaller cycles, because then you could have more than one
cycle of the given length. The probability that there is a cycle of any length
greater than 50 is thus

1

51
+ · · ·+ 1

100
,

again using that there is at most one long cycle (and subtly using the lin-
earity of expectation without mentioning it). This is a Riemann sum for
approximating the integral ∫ 1

1
2

dx

x
= log 2,

so the sum above is approximately log 2 ≈ 0.693. (The actual sum is about
0.688.)



Problem 3 (A very fair division). It is possible to divide the integers
1, 2, . . . , 8 into two sets A and B in a unique manner so that

• 1 is in A,

• A and B contain the same number of elements, and

• the sum of the elements in A equals the sum of the elements in B, and

• the sum of the squares of the elements in A equals the sum of the
squares of the elements in B.

It is also possible to divide the integers 1, 2, . . . , 16 into two sets A and
B in a unique manner so that all of the above hold, as well as

• the sum of the cubes of the elements in A equals the sum of the cubes
of the elements in B.

This is a two-part problem:

(a) (35 pts) What is the set A in the case of 8 numbers?

(b) (35 pts) What is the set A in the case of 16 numbers?

Answer.

(a) {1, 4, 6, 7}

(b) {1, 4, 6, 7, 10, 11, 13, 16}

Solution. It is possible to build these sets up inductively. If you have a
collection A and a collection B such that∑

a∈A

ai =
∑
b∈B

bi

for all i from 0 to n − 1, then the two collections A′ = A ∪ (B + x) and
B′ = B ∪ (A + x) satisfy ∑

a∈A′

ai =
∑
b∈B′

bi

for all i from 0 to n, regardless of the choice of x.
Using this principle, you can build up the sets as follows:



• The sets A1 = {1} and B1 = {2} satisfy the above properties for n = 1.
(That is, they have the same number of elements.)

• Thus the sets A2 = A1∪(B1+2) = {1, 4} and B2 = B1∪(A1+2) = {2, 3}
satisfy the above properties for n = 2. (That is, they have the same
number of elements, and the same sum.)

• Thus the sets A3 = A2∪(B2+4) = {1, 4, 6, 7} and B3 = B2∪(A2+4) =
{2, 3, 5, 8} satisfy the above properties for n = 3. (That is, this is the
first part of the problem.)

• Thus the sets A4 = A3 ∪ (B3 + 8) = {1, 4, 6, 7, 10, 11, 13, 16} and B4 =
B3 ∪ (A3 + 8) = {2, 3, 5, 8, 9, 12, 14, 15} satisfy the above properties for
n = 4. (That is, this is the second part of the problem.)

Let’s prove the principle. We have∑
a′∈A′

(a′)i =
∑
a∈A

ai +
∑
b∈B

(b + x)i

=
∑
a∈A

ai +
i∑

j=0

(
i

j

)
xi−j

∑
b∈B

bj

=
∑
b∈B

bi +
i∑

j=0

(
i

j

)
xi−j

∑
a∈A

aj

=
∑
b∈B

bi +
∑
a∈A

(a + x)i =
∑
b′∈B′

(b′)i,

where in the case i < n, we were able to use the inductive hypothesis to
switch summations over A and B. In the case i = n, we do the same thing,
except we are also able to switch the terms with exponent n because they
are exactly the same. (This is not possible for the other terms, because one
of them has coefficient 1 while the other has coefficient

(
i
j

)
xi−j, which is not

1 if i 6= j.)
Connections. This pattern of As and Bs is connected to an infinite binary

sequence called the Thue-Morse sequence:

0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . .

(See http://en.wikipedia.org/wiki/Thue-Morse_sequence.)

http://en.wikipedia.org/wiki/Thue-Morse_sequence


In this sequence, a 0 in the nth position indicates that n is in A and a 1
indicates that n is in B. The sequence can be formed by taking the first 2k

elements, flipping them, and concatenating them back. The first few steps
of this process are as follows:

• 0

• 0, 1

• 0, 1, 1, 0

• 0, 1, 1, 0, 1, 0, 0, 1

• 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0

Notice that this corresponds directly to the procedure above.
Authors. Written by Boris and Valery Alexeev.

Sources. The problems are original, although they are based on rela-
tively well-known mathematical results.


