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Written test, 25 problems / 90 minutes
October 2, 2010

WITH SOLUTIONS

No calculators are allowed on this test. 10 points for a correct answer, 0
points for an incorrect answer, and 2 points for an answer left blank.

1 Easy Problems

Problem 1. What is the closest integer to

248163264

123456
?

(A) 2 (B) 20 (C) 201 (D)♥ 2010 (E) 201012

Solution. This problem is just intended as warmup. You can figure out the answer
either by just estimating the order of magnitude of the quotient (for example, by
counting digits), or by actually beginning long division. The approximate value of
the quotient is 2010.135.

Remark. Let an be the concatenation of the first n powers of 2 beginning with
2 itself, bn be the concatenation of the first n positive integers, and cn the greatest
integer less than or equal to an/bn. (For example, a6 = 248163264, b6 = 123456, and
c6 = 2010.) Then the answers above are c3 through c7. The sequence cn appears
as sequence A067097 in the Online Encyclopedia of Integer Sequences http://www.

research.att.com/~njas/sequences.

Problem 2. A window has 9 panes in the form of a 3× 3 grid, as in the picture. In
how many ways can one color 6 of these panes yellow, so that the window looks the

same from inside and outside the house?

http://www.research.att.com/~njas/sequences
http://www.research.att.com/~njas/sequences


(A) 6 (B) 9 (C)♥ 10 (D) 36 (E) None of the above

Solution. Of course, we can first color all the panes yellow, and then color 3 panes
white, so we will solve the easier problem, for 3 panes. The solution has to be mirror
symmetric, if we reflect along the vertical middle line.

In the central column there could be either 3 or 1 white panes. For 3, there is
only one possibility. For 1 white pane in the middle there are 3 · 3 = 9 possibilities:
3 for the middle one, and 3 for the white panel in the left column; then we have to
color a pane in the similar position on the right. The total is 1 + 9 = 10.

Problem 3. How many different ways are there to place seven rooks on a chessboard
so that no two attack each other or occupy the same square?

Recall that a chessboard is an 8 by 8 grid. A rook attacks all the squares in the
row and column that it occupies, a total of fifteen squares.

(A) 5040 (B) 40320 (C)♥ 322560 (D) 362880 (E) None of the above

Solution. Consider such a position of seven rooks. The rooks must occupy seven
different rows and seven different columns, so they may be completed in a unique
manner to a position with eight rooks, no two of which attack each other (or occupy
the same square).

There are 8! positions of the latter kind. Indeed, the rook in the first column may
be placed in any of eight different squares; after choosing his position, the rook in the
second column may be placed in any of the seven squares that aren’t in the same row
as the first rook; and so on.

Thus, each position of seven rooks may be obtained by taking one of these 8!
positions and removing one of the 8 rooks. This results in a total of 8 · 8! = 322, 560
different positions.

Problem 4. Recall that dxe denotes the least integer greater than or equal to x. For
what integer n do we have⌈√

1! + 2! + 3! + · · ·+ n!
⌉

= 2010 ?

(A) 7 (B) 8 (C) 9 (D)♥ 10 (E) 11

Solution. Obviously we’re going to get this by order of magnitude estimates. Since
n! < 1! + 2! + · · · + n! < 2 · n!, we want

√
n! to be of the order of magnitude of 103.

Since
√

5! has the order of magnitude of 10, we start with 9! and note that
√

9! =
√

9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 = 9 · 8 ·
√

70 .

Thus 586 <
√

9! < 648, whereas
√

10! =
√

10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 = 10 · 9 · 8 ·
√

7 ,



and so 1440 <
√

10! < 2160. n = 10 must be the one that works, as n = 11 will put
us over the top.

Problem 5. Let

x = 1 +
1

2 + 1
3

, y = 1 +
1

2 + 1
3+ 1

4

, and z = 1 +
1

2 + 1
3+ 1

4+1
5

.

Which of the following is correct?

(A) x < y < z (B)♥ x < z < y (C) y < x < z (D) y < z < x
(E) z < y < x

Solution. When we increase the denominator of a fraction, of course the number de-
creases. So, when we increase the denominator of a fraction that is in a denominator,
the resulting number increases, and so on. Thus, x < z, since 3 < 3 + 1

4+ 1
5

. Similarly,

since 3 + 1
4+ 1

5

< 3 + 1
4
, z < y.

Connections. This problem is motivated by continued fractions and how they are
alternately higher and lower than the real number that they are approximating. In
fact, y and z differ by only 1/4710 ≈ 0.0002.

Problem 6. We all know that sin(0◦) = sin(0) (where the latter input is in radians).
What is the smallest positive number x so that sin(x◦) = sin(x)?

(A) π (B) 180 (C)
360π

180− π
(D)♥

180π

180 + π
(E)

360π

180 + π

Solution. Remember that sin(x) = sin(x + nπ) for any even integer n, but is also
equal to sin(nπ−x) for any odd integer n. So, converting degrees to radians, we must
solve

x · π
180

= x+ nπ (n even) or x · π
180

= nπ − x (n odd) .

These give, respectively, x =
−180nπ

180− π
for n even or x =

180nπ

180 + π
for n odd. Clearly

the smallest positive solution comes by taking n = 1.

Problem 7. A phone number is cool if it is either of the form abc-abcd or of the
form abc-dabc (or both) for some digits a 6= 0, b, c, and d. If numbers are assigned
randomly, what is the chance that you will get a cool phone number? (Note: For the
purposes of this problem, the first digit of any phone number cannot be 0, but there
is no such restriction on the remaining digits.)

(A) 1/2 (B) 2010/106 (C)♥ 1999/106 (D) 1/500 (E) None of the
above



Solution. Denote the fourth, fifth, sixth, and seventh digits of the phone number
by xj, j = 4, 5, 6, 7. The chance of getting a phone number of the first form is
(1/10)3 = 1/1000, since, whatever a, b, c may be the chance that x5 = a is 1/10, the
chance that x6 = b is 1/10, and the chance that x7 = c is 1/10. A similar argument
holds for the second form. However, we must ask whether the two forms can coincide.
This happens if and only if a = b = c = x4 = x5 = x6 = x7, and there’s a (1/10)6

chance that this happens (whatever a may be, the other six must be chosen the same).

So the final answer is P =
1

1000
+

1

1000
− 1

106
=

1999

106
.

Problem 8. Derek prefers his brownies from the center of the pan, and Jacob prefers
them from around the edge. Their friend Ellie gives them a pan of brownies in the
form of a 3-4-5 right triangle. How far from the edges should Derek and Jacob cut it
so that they each get equal areas of brownies?

(A)♥ 1− 1/
√

2 (B) 1/3 (C) 1/
√

2 (D) 2/3 (E) 1

Solution. The easiest solution is this: Observe that the inscribed circle of a 3-4-5

triangle has radius
area of triangle

semiperimeter
= 1. If Derek and Jacob cut out a similar triangle

a distance x from each edge, its inscribed circle will have radius 1−x. Since the ratio

of the areas is
(1− x)2

1
=

1

2
, we must have 1− x = 1/

√
2 (of course, 1− x > 0).

Comment:. This argument does not work on the brownie problem in the ciphering,
#9, because there is no inscribed circle for a non-square rectangle.

Problem 9. If q, r, and s are the solutions of x3 − 5x2 + 7x + 4 = 0, then what is
q(r2 + s2) + r(s2 + q2) + s(q2 + r2)?

(A) −47 (B) −23 (C) 23 (D)♥ 47 (E) not enough information

Solution. If x3 − 5x2 + 7x+ 4 = (x− q)(x− r)(x− s), then we have

q + r + s = 5

qr + qs+ rs = 7

qrs = −4 .

Therefore, q(r2 + s2) + r(s2 + q2) + s(q2 + r2) = (q + r + s)(qr + rs + sq) − 3qrs =
5(7)− 3(−4) = 47.

(In general, any symmetric polynomial in the solutions of a polynomial can be
expressed in terms of the coefficients of the polynomial.)



Problem 10. A circle of radius 1 is sitting inside a 7× 7 square, tangent to the left
and bottom edges, as pictured, with point P at the point of contact with edge A. If
the circle rolls around the inside of the square without slipping, then which edge does
the point P next touch?

P edge A

edge C

edge D edge B

(A) A (B)♥ B (C) C (D) D (E) It never touches an edge again.

Solution. The point P traces out arcs of cycloids. It is not too difficult to write out
parametric equations (if, for example, one wishes to get Mathematica images such as
the ones below).

However, we can solve the problem without any explicit equations. Note that the
circle rolls a distance of 5 units across edge A, and so it turns through an angle of
5 radians. This is slightly greater than 3π/2; indeed, θ = 5 − 3π/2 ≈ 0.29 < π/10.
Note now that when the circle rolls along edge B, the point P starts to the left of the
edge and below the horizontal by θ. Since 5 + θ is still less than 2π, the point P still
does not make contact with the edge as it rolls.

Now, 5θ < π/2 but 6θ > π/2. This means that when the circle arrives at the sixth
(upper right) corner, the point P makes a positive angle (measured clockwise) with
the horizontal; therefore, just before this, P must have touched the edge. Thus, P
next touches edge B, on the second trip around. See the picture below (note that the
picture is too small to see that at position 5 the point is actually not touching).

Note: The Mathematica notebook that gives this animation is available at http:
//www.math.uga.edu/~shifrin/RollingBall.nbp. Copy and save this (what will
appear as a text file) on your own computer as a file with the same name. To view
it, you will need either Mathematica or Mathematica Player (the latter available for
free at http://www.wolfram.com/products/player/download.cgi).

http://www.math.uga.edu/~shifrin/RollingBall.nbp
http://www.math.uga.edu/~shifrin/RollingBall.nbp
http://www.wolfram.com/products/player/download.cgi


2 Medium Problems

Problem 11. A vase in the shape shown below is slowly filled with water. Which of
the graphs below most closely represents the height h of the water as a function of
the volume V of water that has been poured in?

h

1

2



(A)

h

V (B)

h

V (C)

h

V (D)♥

h

V

(E)

h

V

Solution. Let’s think about the effect that adding a small volume ∆V of water
has on the height. First of all, we eliminate (C), since h must always increase as V
increases. To begin with, for 0 ≤ h ≤ 1, the radius r is an increasing function of h, so
the height rises more quickly for small h than for larger h; i.e., the rate of change of
h is decreasing. This is exactly what it means for the graph of h to be concave down.
This eliminates (A), (B), and (E). That leaves only (D). (Notice also that h ≈ r2 for
small r. Since ∆V/∆h ≈ πr2, we have ∆V/∆h ≈ πh, and so ∆h/∆V ≈ 1/(πh) is
very big near h = 0. That confirms the choice of (D).)

Of course, some calculus wouldn’t hurt on this problem. Recall that dV/dh = πr2,
where r is the cross-sectional radius, and so dh/dV = 1/(πr2) > 0. This means that
h is always increases as a function of V , and so (C) is ruled out. It’s evident that the
graph of h as a function of V should have infinite slope at the origin (since dV/dh = 0
at h = 0), and this rules out (A), (B), and (E). This leaves only (D). (We leave it as
an exercise to relate the concavity of h(V ) to dr/dh.)

Problem 12. Let an be the n-th smallest positive integer the sum of whose decimal
digits is 3. For example, a18 = 2010. How many digits does a1000 have?

(A) 15 (B) 16 (C) 17 (D)♥ 18 (E) 19

Solution. The number of such integers with d digits or fewer is
(
d+2
3

)
. Indeed,

consider placing (d− 1) “digit separators” and 3 “digits” in all of the possible orders.
Then one can build up a correspondence between the

(
(d−1)+3

3

)
different placement



orders and numbers whose decimal digits sum to 3. For example, consider d = 3:

||ooo 7→ 003 o|o|o 7→ 111

|o|oo 7→ 012 o|oo| 7→ 120

|oo|o 7→ 021 oo||o 7→ 201

|ooo| 7→ 030 oo|o| 7→ 210

o||oo 7→ 102 ooo|| 7→ 300

Thus we need only find the smallest value of d such that
(
d+2
3

)
= d(d+1)(d+2)

6
≥ 1000.

We find that
(
17+2

3

)
= 969 < 1000 but

(
18+2

3

)
= 1140 ≥ 1000, so the answer is 18.

Problem 13. Let σ(n) be the sum of the positive divisors of n. For example, σ(12) =
1 + 2 + 3 + 4 + 6 + 12 = 28. How many integers n are there so that σ(n) = 72?

(A) 1 (B) 2 (C) 3 (D) 4 (E)♥ 5

Solution. Let the notation pk || n mean that pk is the largest power of the prime p
that divides n. Then we may express

σ(n) =
∏
pk||n

(
1 + p+ · · ·+ pk

)
=
∏
pk||n

pk+1 − 1

p− 1
.

So we are looking for expressions of the form 1 + p+ · · ·+ pk that divide 72 = 23 · 32.
It turns out that all such expressions are of the form 1+p, and they are the following:

1 + 2 = 3 1 + 11 = 12

1 + 3 = 4 1 + 17 = 18

1 + 5 = 6 1 + 23 = 24

1 + 7 = 8 1 + 71 = 72

In order to get σ(n) = 72, they may be combined into the following five numbers:

30 = 2 · 3 · 5 46 = 2 · 23 51 = 3 · 17 55 = 5 · 11 71 = 71

Problem 14. How many different Hamiltonian cycles are there on the vertices of
the cube? That is, how many different ways are there to order the vertices of the
cube as a cycle (v1, . . . , v8) so that consecutive vertices are adjacent (including v8 and
v1)? Note that any cycles having the same adjacent vertices are considered the same:
e.g., (v1, v2, . . . , v8), (v2, v3, . . . , v8, v1), (v3, . . . , v8, v1, v2), etc., as well as (v8, . . . , v1),
(v7, . . . , v1, v8), etc.

(A) 1 (B) 2 (C) 3 (D) 4 (E)♥ 6



Solution. One can either simply count the cycles, or use some sort of ad-hoc argu-
ment like the following:

You can identify two special faces associated to any Hamiltonian cycle, for ex-
ample, by looking at the two faces that only have two edges in the cycle. These
two special faces are opposite, and there are two ways in which two opposite faces
can correspond to a Hamiltonian cycle. Thus, there are two cycles for each pair of
opposite faces, for a total of six.

Problem 15. Let S be the sum of all seven-digit numbers whose digits are some
permutation of 1, 2, 3, 4, 5, 6, and 7. Find the next-to-last (“tens”) digit of S.

(A) 0 or 1 (B) 2 or 3 (C) 4 or 5 (D)♥ 6 or 7 (E) 8 or 9

Solution. There are 7! such numbers. They may be paired so that each pair sums
to 8888888, so their sum S is 7! · 4444444.

This number is divisible by 10, but after dividing through by 10, we obtain S/10 =
7 · 6 · 4 · 3 · 4444444. We need only figure out the ones digit of this product, which
ends up being 6.

The sum is actually 22399997760.

Problem 16. Suppose there are 10 points on the circumference of a circle. Draw all(
10
2

)
= 45 chords connecting these points. What is the largest number of regions into

which these chords can divide the circle?

(A) 128 (B)♥ 256 (C) 512 (D) 1024 (E) None of the above

Solution. Suppose there are n points instead of 10. Then if the points on the
circle are in as general a position as possible (no three chords coincide), there are

(
n
4

)
intersection points inside the circle. Thus the number of vertices in the diagram is
n+

(
n
4

)
. The number of edges is half the sum of the degrees of the vertices, which is

n(n− 1) + 4
(
n
4

)
. Finally, by Euler’s formula, we can compute the number of regions

in the circle:

1 + E − V = 1 +
n(n− 1)

2
+ 2

(
n

4

)
−
(
n

4

)
=

(
n

0

)
+

(
n

2

)
+

(
n

4

)
=

(
n− 1

0

)
+

(
n− 1

1

)
+

(
n− 1

2

)
+

(
n− 1

3

)
+

(
n− 1

4

)
.

In the case n = 10, this is half of the binomial coefficients in the 9th row of Pascal’s
triangle, so the answer is 1

2
29 = 28 = 256.

Alternate solution. There is also a combinatorial proof of this result which assigns
subsets of {1, . . . , n − 1} of size at most four to each region of the subdivision by



chords. See, for example, the section “How many regions?” in The Book of Numbers
by Conway and Guy.

Remark. Note that for the first few values of n, the number of regions is 1, 2, 4,
8, and 16—all powers of 2. However, the next value is 31. The value 256 is again
a power of 2, but it is 1 smaller than what you would expect if the original pattern
continued.

Problem 17. The first three centered hexagonal numbers (h1 = 1, h2 = 7, and
h3 = 19) are illustrated below:

That is, the n-th centered hexagonal number hn is the number of circles in a diagram
that has one circle surrounded by (n−1) layers of circles in a hexagonal lattice. What
is the 10-th centered hexagonal number h10?

(A) 217 (B) 231 (C) 276 (D) 331 (E)♥ None of the above

Solution. The correct answer is 271. In general, the n-th centered hexagonal number
is n3 − (n− 1)3 = 3n2 − 3n+ 1 = 1 + 6 · n(n−1)

2
.

This final formula can be seen visually as one more than six times a triangular
number:

Alternate solution. You can also see the expression n3 − (n− 1)3 by interpreting
each centered hexagonal number as the extra layer you have to add to an (n−1)-cube
to obtain an n-cube.

Problem 18. What is the smallest positive integer that can not be written as the
sum of 10 or fewer factorials?

(A) 119 (B) 163 (C)♥ 239 (D) 241 (E) 10!− 1



Solution. We can actually think of representing a positive integer by a unique
numeral in “base factorial.” Since (n + 1)n! = (n + 1)!, we will use n or fewer n!s.
With this restriction, every positive integer can be written uniquely as a sum of
factorials, with k or fewer k!s for each k. For example,

87 = 3 · 4! + 2 · 3! + 1 · 2! + 1 · 1! = “3211!” .

What guarantees that this works is the formula
n∑
k=1

k · k! = (n+ 1)!− 1 ,

often assigned as an elementary exercise in mathematical induction.
We are looking for the smallest number so that its digits in base factorial add up

to 11. Clearly this is the number 14321! = 5! + 4 · 4! + 3 · 3! + 2 · 2! + 1 · 1! = 239.

Problem 19. Points A and B are fixed on a circle, and AB is not a diameter.

Consider a diameter XY and the point P given by the intersection of
←→
AX and

←→
BY ,

as pictured. What is the locus of all such points P as X moves all the way around
the circle? (Note: When A = X, we have P = A, and when B = Y , we have P = B.)

A B

X

Y

P

(A) an arc of a circle (B) two arcs of a circle, not forming a complete circle
(C) an ellipse that is not a circle (D)♥ a circle (E) None of the above

Solution. Let Y0 denote the point opposite B on the circle. When Y is outside
_

AY0, we note that P is outside the circle, and when Y lies in
_

AY0, P moves in-
side the circle. Let’s start with P outside. We begin by recalling what used to
be a well-known result in high school geometry: As shown in the figure, we have



γ = (α − β)/2. (Proof: Considering the angle sum of quadrilateral OBPX and the
sum of the angles at O we get β + γ = θ + τ = (α + β)/2.) In our application, since
XY is always a diameter, we have α − β = γ0, independent of the position of P .
Therefore, γ = γ0/2 is a constant as P varies. Since ∠APB is a constant, P traces
out the arc of a circle Γ with chord AB. (Why?)

But, now, what happens when P comes inside the circle? An analogous argument
to the one we gave above shows that π − γ = (α + β)/2, and so now π − γ = γ0/2
(draw the picture and check!). This means that ∠PAB now subtends the opposite
arc on the circle Γ. Thus, the desired locus is the entire circle Γ.

Problem 20. Given quadrilateral ABCD, as pictured, with ∠A = 120◦, and both
∠B and ∠D right angles. If AB = 2 and AD = 11, find AC.

A

B C

D

120º

2

11

(A) 5
√

3 (B) 8
√

3 (C)♥ 14 (D) 10
√

2 (E) None of the above

Solution. The first observation is that this quadrilateral is (co)cyclic, i.e., its vertices
lie on a circle. Since ∠B = 90◦, AC will in fact be a diameter of the circle, as shown
below. To find the radius of the circle, we use the somewhat esoteric formula for the

circumradius of a circle with sidelengths a, b, and c and area A: R =
abc

4A
. First, we

use the law of cosines to find that

BD =
√

22 + 112 − 2 · 2 · 11 · cos(120◦) =
√

125 + 22 =
√

147 = 7
√

3 .

Now, we find the area of 4ABD either by using Heron’s formula or, more simply,

by using the original information: A =
1

2
(2)(11)(sin 120◦) = 11

√
3/2. Therefore, the

circumradius of 4ABD is

R =
2 · 11 · 7

√
3

2 · 11
√

3
= 7 .

Finally, AC = 2R = 14.

A

B C

D

120º

2

11

A

B C

D

120º
2

11

60º

60º

E

22



Second (and more elementary) solution..
Cleverly extend BA and CD to intersect at point E. Then basic 30◦-60◦-90◦

triangle facts give AE = 22 and hence BC = 24/
√

3 = 8
√

3. Then Pythagoras gives

AC =
√

22 + (8
√

3)2 = 2
√

1 + 16 · 3 = 14.

Problem 21. One marble is placed in each of three bowls. Five times in succession,
a marble is moved from one bowl (chosen at random) to a different bowl (chosen at
random). What is the probability that we again have one marble in each of the three
bowls?

(A) 5/108 (B) 1/18 (C) 1/6 (D)♥ 5/32 (E) 1/9

Solution. The three possible positions can be called 111, 210, and 300, corresponding
to zero, one, and two empty bowls. The transition graph is as follows:

111 210 300
1 1

1/4 1/4

1/2

In other words, if you’re either in 111 or 300, then the next state will necessarily
be 210. However, if you’re in state 210, then you either stay or leave with equal
probability; if you leave, then it’s equal probability either way. (In particular, the
overall probability of going from 210 to 111 is 1/4.)

Thus the first step is fixed, always to 210, and the last step will have to be from
210 to 111 if we intend to return to the initial configuration. Hence we have to analyze
the probability that if you start at 210 and take three steps you end up back at 210.
It turns out to be 5/8 here by simply calculating the different possibilities. (One can
either stay at 210 for three steps at a probability of 1/8, or one can stay for one of
the turns but leave for the other two for a probability of 1/4 in two different ways.
Note that for this calculation, it’s possible to consider states 111 and 300 the same
because they act the same; thus, there are only two states, “at 210” and “away from
210 for one turn”.) After multiplying by the 1/4 probability for the last move, the
final answer is 5/32.

With some standard recursion analysis, one can find that the probability of re-
turning after n steps instead of 5 is

1

3

(
1

2
+

(
−1

2

)n)
,

so it generally hovers around 1/6. In fact, it is the fraction with denominator 2n that
is nearest to 1/6.



3 Hard Problems

Problem 22. Now, three marbles are placed in each of three bowls. Five times in
succession, a marble is moved from one bowl (chosen at random) to a different bowl
(chosen at random). What is the probability that we again have three marbles in
each of the three bowls?

(A)♥ 5/108 (B) 1/18 (C) 1/6 (D) 5/32 (E) 1/9

Solution. Notice that there’s no difference between starting with three marbles
in each bowl and starting with six or ten marbles. We can never move more than
two marbles out of any bowl if we are to have a chance of returning to our original
configuration in five moves.

Because there are 5 moves, there will be precisely one bowl from which only one
marble is removed. Once we know which bowl that is and where that marble is put,
all the other moves are determined (up to order). Denote by [ij] the event of moving
one marble from bowl i to bowl j, i 6= j. Suppose, for example, that [12] is the only
move which removes a marble from bowl 1. The two marbles removed from bowl 3
cannot both be put in bowl 2 because we have already put a marble from bowl 1
there; nor can both marbles from bowl 3 be put in bowl 1 because only one marble
is removed from that bowl. Thus, both moves [31] and [32] must appear. At this
point, there are 5 marbles in bowl 2 and 1 marble in bowl 3. To get back to the
original configuration, both remaining moves must be [23]. (From a slightly different
perspective, up to reordering, the 5 moves must consist of a “3-cycle” [12][23][31]
followed by a “2-cycle” [23][32].)

Now let’s count. We must choose the bowl from which only one marble is removed;
there are 3 choices for this. We must choose to which bowl we’re transferring that
marble; there are 2 choices for that. Now, up to order, the remaining moves are
determined. There are 5!/2! = 60 permutations of this sequence of moves (because
precisely one of the moves appears twice). Since each move has probability 1/6 (here
it is crucial that we never have an empty bowl), the answer is (6 · 60)/65 = 5/108.

Alternate solution (in the spirit of no.21).
Using the notation of the solution of #21, we start with the configuration 333

and, with probability 1, go to the configuration 234 with the first move. Obviously,
with the fifth move, we must return from 234 to 333, and there’s a probability of 1/6
that we do so. So it remains to find the probability of starting at 234 and returning
to that configuration in a sequence of three moves. From 234 we can arrive at 144,
135, or 225, and we must stay among these 5 configurations if there’s any chance of
finishing in the desired number of moves. Now we write down the transition matrix
(whose ij-entry gives the probability of moving from configuration j to configuration
i): Ordering the configurations by 333, 234, 144, 135, and 225, we have



A =


0 1/6 0 0 0
1 1/3 1/3 1/6 1/3
0 1/6 0 1/6 0
0 1/6 1/3 0 1/3
0 1/6 0 1/6 0


Now the 22-entry of A3 (which is actually not that hard to compute if we factor

1/6 out of A) gives us the probability of returning to 234 in three moves, and this

entry is . . . 5/18. Thus, the answer, as promised, is
1

6
· 5

18
=

5

108
. By the way, we

suggest that the studious reader recast the argument in the solution of #21 using a
transition matrix.

Problem 23. Suppose triangle ABC has side lengths BC = 13, AC = 14, and
AB = 15. Extend the two sides meeting at vertex A by BC, the two sides meeting
at vertex B by AC, and the two sides meeting at vertex C by AB. The endpoints of
these six new line segments all lie on a circle. The radius of this circle is

√
n for some

integer n. What is the sum of the digits of n?

(A)♥ 16 (B) 17 (C) 18 (D) 19 (E) 20

Solution. This circle is called the Conway circle. Its center is the same as the incenter
of4ABC and its radius is

√
r2 + s2, where r and s are the inradius and semiperimeter

of ABC, respectively. In this case, we may compute that s = 13+14+15
2

= 21. Also,
the inradius r = A/s, where A is the area of the triangle. We may either use Heron’s
formula to compute the area, or notice that a 13-14-15 triangle is composed of a
5-12-13 right triangle stuck to a 9-12-15 right triangle and so A = 84. This r = 4.

Finally, we get that √
42 + 212 =

√
457,

so the sum of the digits of n is 4 + 5 + 7 = 16.
We can prove the properties of Conway’s circle mentioned above fairly easily. Let

I be the incenter of the triangle, and let X be the point at the end of the extension
(at vertex A) of AB by length BC. Finally, suppose a perpendicular from point I to
side AB hits the side at P . Then we have

IX =
√
IP 2 + PX2 =

√
IP 2 + (PA+ AX)2 =

√
r2 + (s−BC +BC)2 =

√
r2 + s2.

But this argument works symmetrically for any of the six points, so the circle of the
given radius centered at the incenter passes through all six points.

Problem 24. In how many ways can 2010 be written as a sum of 2 or more consecutive
positive integers? (For example, 9 = 4 + 5 = 2 + 3 + 4 can be so written in 2 ways.)

(A) 1 (B) 3 (C) 5 (D)♥ 7 (E) 8



Solution. First notice that for any k, any positive integer N can be written in at
most one way as the sum of k consecutive positive integers, and the largest possible
such k would occur when N = 1 + 2 + · · ·+ k = k(k+ 1)/2. So, if we try to solve this
for N = 2010, we find k(k + 1) = 4020, and so k <

√
4020 < 64.

Next notice that if N is the sum of any k consecutive integers, then

N ≡ 1 + · · ·+ k ≡ k(k + 1)

2
(mod k) , so N ≡

{
0 (mod k) , k odd

k/2 (mod k) , k even
. (∗)

Conversely, if (∗) holds, then let m =
N − (1 + 2 + · · ·+ k)

k
, and notice that N =

(m+ 1) + (m+ 2) + · · ·+ (m+ k). Thus, we need only find the number of k so that
(∗) holds.

For k odd, k must be a factor of N = 2010 = 2 · 3 · 5 · 67. This gives 3, 5, and 15
as odd factors of 2010 that are less than 64.

Now we want to determine for which even numbers k we have 2010 ≡ k/2 (mod k).
Note that this can occur only if 2010 is divisible by k/2 and that k/2 must be even.
This gives us only k = 4, k = 12, k = 20, and k = 60. (Since 2010 is not divisible by
4, these conditions are in fact equivalent.)

Finally, let’s check that we do in fact get solutions in all these 7 cases:

k m 2010 =
3 668 669 + 670 + 671
4 500 501 + 502 + 503 + 504
5 399 400 + 401 + 402 + 403 + 404

12 161 162 + · · ·+ 173
15 126 127 + · · ·+ 141
20 90 91 + · · ·+ 110
60 3 4 + · · ·+ 63

Problem 25. Let Vn(r) be the (n-dimensional) volume of the n-dimensional ball of
radius r. So, V2(r) = πr2, V3(r) = 4

3
πr3, V4(r) = π2

2
r4, etc. We also set V0(r) = 1.

Find the sum
S = V0(1) + V2(1) + V4(1) + . . .

(A)♥ eπ (B) πe (C) π2 (D) infinite (the sum diverges) (E) None of
the above

Solution. The volume of an n-dimensional ball of radius r is given by the following
very simple but not widely known formula, which can be proved by induction using
some calculus:

Vn(r) =
(πr2)

n
2

(n
2
)!

=
π

n
2

(n
2
)!
rn



(Note that Vn(r) = Vn(1) · rn by dimension analysis.) So,

V0(r) + V2(r) + V4(r) + · · · = 1 +
(πr2)1

1!
+

(πr2)2

2!
+

(πr2)3

3!
+ · · · = eπr

2

using the formula

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ . . .

For r = 1, this gives eπ.
Note: This formula works for odd n as well, if you take into account that (1

2
)! =

√
π

2
.

For example, (3
2
)! = 3

2
· (1

2
)! = 3

4

√
π, and so

V3(r) =
π

3
2

(3
2
)!
r3 =

π
3
2

3
4

√
π
r3 =

4π

3
r3.

For completeness, we include a proof of the formula for the (2n)-volume of a (2n)-
ball, by induction (using calculus). The base case V0(r) = 1 is by convention. For
the inductive step, we have in polar coordinates

V2n+2(1) =

∫ 1

0

∫ 2π

0

V2n

(√
1− r2

)
r dθ dr

= 2π

∫ 1

0

V2n

(√
1− r2

)
r dr

= 2π

∫ 1

0

(π(1− r2))n

n!
r dr

=
2πn+1

n!
· −(1− r2)n+1

2(n+ 1)

∣∣∣∣r=1

r=0

=
πn+1

(n+ 1)!

Connections. The celebrated Gelfond-Schneider Theorem implies that eπ is tran-
scendental. So eπ is known to be transcendental, whereas none of e+ π, e− π, e · π,
e/π, and πe is even proven to be irrational.
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