Ph.D. Qualifying Exam, Probability Theory, August 2006 (Solve any 5 problems.)

- 1. Let $\{X_n\}$ be a sequence of independent random variables.
 - (a) If $EX_n = 0$ for n = 1, 2, ..., and $\sum_{n=1}^{\infty} \text{var}(X_n) < \infty$, show that $\sum_{n=1}^{\infty} X_n$ converges a.s.
 - (b) State (without proof) Levy's inequality and use it to prove that $S_n = \sum_{k=1}^n X_k$ converges a.s. if and only if it converges in probability.
- 2. (a) State (without proof) the Levy continuity theorem regarding a sequence of characteristic functions.
 - (b) Let $\{X_n\}$ be iid r.v.s with distribution F(x) having finite mean μ and varivance σ^2 . Let $S_n = X_1 + \cdots + X_n$. Show that

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \to N(0,1) \text{ in distribution as } n \to \infty.$$

3. (a) Given a random variable X with finite mean square. Let \mathcal{D} be a σ -algebra. Show that $E[X|\mathcal{D}]$ is the minimizer of $E(X-\xi)^2$ over all \mathcal{D} -measurable r.v.s ξ , i.e.,

$$E(X - E[X|\mathcal{D}])^2 \le E(X - \xi)^2$$

for all \mathcal{D} -measurable r.v.s ξ .

(b) Let (Ω, \mathcal{F}, P) denote a probability space. Suppose $f: R^n \times \Omega \to R$ is a bounded $\mathcal{B}(R^n) \times \mathcal{C}$ measurable function and X be a R^n -valued \mathcal{D} measurable random variable. Assume \mathcal{C} and \mathcal{D} are independent. If $g(x) := Ef(x, \omega)$, then

$$g(X) = E[f(X, \omega)|\mathcal{D}], \text{ a.s.}$$

4. (a) Let (Ω, \mathcal{F}, P) be the probability space with $\Omega = [0, 1]$, $\mathcal{F} =$ the Borel σ -algebra on [0, 1], and P = Lebesgue measure on \mathcal{F} . Let

$$X_n = \frac{n}{\log n} I_{(0,\frac{1}{n})}.$$

Show that $\{X_n: n \geq 2\}$ is uniformly integrable.

(b) Show that for any two random variables X and Y with $Var(X) < \infty$,

$$Var(X) = E[Var(X|Y)] + Var[E(X|Y)].$$

- 5. Let $\{X_n\}$ be iid r.v.s. Then,
 - (a) $n^{-1} \max_{1 \le i \le n} |X_i| \to 0$ in probability iff $nP(|X_1| > n) = o(1)$.
 - (b) $n^{-1} \max_{1 \le i \le n} |X_i| \to 0$ a.s. iff $E|X_1| < \infty$.
- 6. Suppose that X and Y are independent random variables with the same exponential density

$$f(x) = \theta e^{-\theta x}, \ x > 0,$$

with $\theta > 0$. Show that the sum X + Y and the ratio X/Y are independent.

- 7. (a) Let X_t be an \mathcal{F}_t -martingale and ϕ a convex function with $E|\phi(X_t)| < \infty$ for all $t \geq 0$. Show that $\phi(X_t)$ is an \mathcal{F}_t -submartingale.
 - (b) Let X_t be a submartingale. Show that $\sup_t E|X_t| < \infty$ iff $\sup_t E(X_t)^+ < \infty$.