Probability Theory, Ph.D Qualifying, Spring 2012

Completely solve any six problems.

1. If the independent random variables $\{X_n\}$ satisfy the condition

$$Var(X_i) \le c \le \infty, i = 1, 2, \ldots$$

show that the SLLN holds.

- 2. (a) Let (Ω, \mathcal{F}, P) be a probability space. When do you say that \mathcal{F} is P-trivial?
 - (b) Show that a σ -field is P-trivial if and only if \mathcal{F} is independent of itself. Also show in this case, that any \mathcal{F} -random variable is constant almost surely.
- 3. Prove for iid random variables $\{X_n\}$ with $S_n = X_1 + \cdots + X_n$ that

$$\frac{S_n-C_n}{n}\to 0 \text{ a.s.}$$

for some sequence of constants C_n if and only if $E|X_1| < \infty$.

- 4. Let X_n , $n \ge 1$, be a sequence of i.i.d nondegenerate real random variables, and put $S_n := X_1 + \cdots + X_n$, $n \ge 1$. Show that:
 - (a) $P(S_n \in B \ i.o) = 0 \text{ or } 1, \text{ for any } B \in \mathcal{B}(\mathbb{R});$
 - (b) $\limsup_{n} S_{n} = \infty \ a.s \ or \infty \ a.s;$
 - (c) $\limsup_{n} (\pm S_n) = \infty$ a.s if the X_n are symmetric.
- 5. Let $X, \{X_n, n \geq 1\}, \{Y^{(k)}, k \geq 1\}, \{Y^{(k)}_n, n \geq 1, k \geq 1\}$, be real random variables such that $Y^{(k)}_n \longrightarrow Y^{(k)}$ in distribution as $n \to \infty$, for fixed k, and that $Y^{(k)} \to X$ in distribution as $k \to \infty$. Show that $X_n \to X$ in distribution if $\lim_{k \to \infty} \limsup_{n \to \infty} E[|Y^{(k)}_n X_n| \land 1] = 0$.
- 6. (a) Define the uniform integrability of a family X_t , $t \in T$, of random variables.
 - (b) Let $X \in L^1(\Omega, \mathcal{F}, P)$, and A_t , $t \in T$ be a family of sub σ -fields of \mathcal{F} , where T is an index set. Show that the conditional expectations $\{E[X|A_t], t \in T\}$ form a uniformly integrable family.
- 7. Let $\{X_n, n \geq 1\}$ be a sequence of independent identically distributed random variables with $E|X_1| < \infty$. Show that

$$\lim_{n\to\infty}\frac{1}{n}E(\max_{1\leq k\leq n}|X_k|)=0.$$

- 8. Let $\{X_n\}$ be iid r.v.s with $E|X_1| < \infty$. Show that $\sum (-1)^n X_n/n$ converges a.s.
- 9. (a) Given a discrete-time filtration $(\Omega, \mathcal{F}, \mathcal{F}_n, n \geq 1)$, define a process X_n predictable w.r.t to the filtration.
 - (b) Let \mathcal{F}_n , $n \geq 1$, be a filtration on (Ω, \mathcal{F}, P) and X_n, \mathcal{F}_n , $n \geq 1$, be any integrable adapted process.
 - i. Show that X has an a.s unique decomposition $X_n = M_n + A_n$, $n \ge 1$, such that $\{M_n, \mathcal{F}_n\}$ is a martingale and $\{A_n, \mathcal{F}_n\}$ is a predictable process with $A_0 = 0$.
 - ii. Show that X_n is a submartingale if and only if A_n is a.s nondecreasing (in n.)