Ph.D. Prelim

- 1. Let (Ω, A, P) be a probability space and \mathfrak{I} an algebra on Ω such that $A = \sigma(\mathfrak{I})$. Prove that, for every $\epsilon > 0$ and $A \in A$, there is a set $F \in \mathfrak{I}$ such that $P(A \triangle F) < \epsilon$.
- Let (Ω, A, P) be a probability space and P be a π-system, (i.e., P is a system of events closed under finite intersection), such that Ω = 0 A_k for some sequence k=1
 {A_k} ⊂ P. Suppose that the equation P(A ∩ B ∩ C) = P(A)P(B)P(C) holds for fixed events B and C and for all A ∈ P. Show that this equation holds for all A ∈ σ(P).
- 3. a) Let $X, Y, \in L^1(\Omega, A, P)$. Show that

$$E(Y) - E(X) = \int_{-\infty}^{\infty} [P\{X < t \le Y\} - P\{Y < t \le X\}] dt$$

- b) Let (X,Y) be a nondegenerate random interval. Show that its expected length is the integral w-r-t. t of the probability that it covers t.
- 4. Let $\{X_n\}$ be a sequence of independent random variables.
 - a) If $E(X_n)=0$, $n\geq 1$, and $\sum\limits_{1}^{\infty} var(X_n)<\infty$, show that $\sum\limits_{1}^{\infty} X_n$ converges $a\cdot s$.
 - b) Show that $S_n = \sum_{k=1}^n X_k$ converges a.s iff it converges in probability.

- 5. Find uniformly integrable random variables X_n for which there is no integrable random variable Z satisfying $P[|X_n| \ge a] \le P[|Z| \ge a]$, for a > 0. [Hint: Let X_n take values n and 0 with probabilities $p_n = \frac{1}{n \log n}$ and $1 p_n$, respectively.]
- 6. a) Quote Lindeberg condition and Lyapunov condition for the central limit property of a sequence of random variables.
 - b) Let X_1, X_2, \ldots , be a sequence of independent normally distributed random variables with $E(X_k) = 0$, $k \ge 1$, and $var(X_1) = 1$, $var(X_k) = 2^{k-2}$, $k \ge 2$. Show that $\{X_k\}$ does not satisfy the Lindeberg condition.
 - c) Give a sequence of random variables satsifying the Lindeberg condition but not the Lyapunov condition.
- 7. Use strong Law of large numbers to show that every number in [0, 1) is normal (i.e., with probability 1 the proportion of zeros and ones in the binary expansion of the numbers tends to $\frac{1}{2}$).
- 8. Let $\{\mathfrak{T}_n\}$ be a nonincreasing family of σ -algebras, $\mathfrak{F}_1\supset \mathfrak{F}_2\supset \ldots$, and X be an integrable random variable. Show that

$$E\{X|\mathfrak{T}_n]\longrightarrow E[X|\mathfrak{T}_\infty]\ \text{ P-a.s and in }\ L^1\ ,$$
 where $\mathfrak{T}_\infty=\mathop\cap_{k=1}^\infty\,\mathfrak{T}_k.$