Ph.D. Preliminary Examination, March 1997

(Solve any 5 problems completely.)

- 1. Let $\{X_n\}$ be a sequence of independent random variables.
 - (a) If $EX_n = 0$ for n = 1, 2, ..., and $\sum_{n=1}^{\infty} \text{var}(X_n) < \infty$, show that $\sum_{n=1}^{\infty} X_n$ converges a.s.
 - (b) State (without proof) Levy's inequality and use it to prove that $S_n = \sum_{k=1}^n X_k$ converges a.s. if and only if it converges in probability.
- 2. (a) Prove that for any r.v. X

$$E|X| = \int_0^\infty P(|X| \ge t)dt.$$

(b) Given a square integrable r.v. X, show that for $\lambda \geq 0$,

$$P(X - EX \ge \lambda) \le \frac{\sigma^2(X)}{\sigma^2(X) + \lambda^2}.$$

- 3. (a) State (without proof) the Levy continuity theorem regarding a sequence of characteritic functions.
 - (b) Let $\{X_n\}$ be iid r.v.s with distribution F(x) having finite mean μ and varivance σ^2 . Let $S_n = X_1 + \cdots + X_n$. Show that

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \to N(0,1) \text{ in distribution as } n \to \infty.$$

- 4. (a) State (without proof) the Doob's maximum inequality and Kolmogorov's inequality.
 - (b) Let \mathcal{F}_n be a family of σ -algebras such that

$$\mathcal{F}_1 \supset \mathcal{F}_2 \supset \cdots$$

and X be an integrable random variable. Show that

$$E[X|\mathcal{F}_n] \to E[X|\mathcal{F}_\infty]$$
 a.s. and in L^1 ,

where $\mathcal{F}_{\infty} = \bigcap_{n=1}^{\infty} \mathcal{F}_n$.

- 5. If $\{X_n\}$ are iid r.v.s, then $E|X_1| < \infty$ if and only if $\sum_{n=1}^{\infty} X_n \frac{\sin nt}{n}$ converges a.s. for every $t \in (-\infty, \infty)$.
- 6. Let $\{X_n\}$ be iid r.v.s. Then,
- (a) $n^{-1} \max_{1 \le i \le n} |X_i| \to 0$ in probability if and only if $nP(|X_1| > n) = o(1)$.
 - (b) $n^{-1} \max_{1 \le i \le n} |X_i| \to 0$ a.s. if and only if $E|X_1| < \infty$.
- 7. (a) Given a random variable X with finite mean square. Let \mathcal{D} be a σ -algebra. Show that $E[X|\mathcal{D}]$ is the minimizer of $E(X-\xi)^2$ over all \mathcal{D} -measurable r.v.s ξ , i.e.,

$$E(X - E[X|\mathcal{D}])^2 \le E(X - \xi)^2$$

for all \mathcal{D} -measurable r.v.s ξ .

(b) Let (Ω, \mathcal{F}, P) denote a probability space. Suppose $f: R^n \times \Omega \to R$ is a bounded $\mathcal{B}(R^n) \times \mathcal{C}$ measurable function and X be a n-dimensional \mathcal{D} measurable random variable. Assume \mathcal{C} and \mathcal{D} are independent. If $g(x) := Ef(x, \omega)$, then

$$g(X) = E[f(X, \omega)|\mathcal{D}], \text{ a.s.}$$