Real and Complex Analysis Preliminary Examination

Spring, 1999

Name St	Student Id.	No
---------	-------------	----

Instruction: There are ten problems in total. Please work as many problems as possible. Use a separate sheet of paper to do each problem and show all your work.

- [1] State and prove one of the following theorems:
- 1. Lusin's Theorem
- 2. Egoroff's Theorem
- 3. Fubini's Theorem
- 4. Lebesgue Dominated Convergence Theorem
- 5. The Riesz Representation Theorem for L_p .
- [2] Show that the set of all discontinuity points of a monotone function is countable.
- [3] Suppose that $f_n, n = 1, 2, 3, \cdots$ converge to f in measure and $g_n, n = 1, 2, 3, \cdots$, converge to g in measure. Here, f_n converges to f in measure if, for any $\epsilon > 0$.

$$\lim_{n \to +\infty} \text{measure}(\{x, |f_n(x) - f(x)| > \epsilon\}) = 0.$$

Suppose that both f and g are bounded almost everywhere. Show that f_ng_n converges to fg in measure.

[4] Suppose that f is Lebesgue integrable on [a, b]. Show that

$$\lim_{n \to +\infty} \int_a^b f(x) |\cos(nx)| dx = \int_a^b f(x) dx.$$

[5] Show that if $\{f_n\}$ converges to f in $L_2(a,b)$ weakly and $||f_n||_2$ converges to $||f||_2$, then f_n converges to f strongly in $L_2(a,b)$.

- [6] State and prove one of the following theorems:
- 1. Cauchy's Integral Theorem
- 2. Morera's Theorem
- 3. Rouche's Theorem
- 4. Weierstrass' Theorem
- 5. Mittag-Leffler's Theorem
- [7] (a) Find an analytic function f(z) at z=0 satisfying $f(1/n)=\frac{n}{n+1}, n=1,2,\cdots$. Show that such an analytic function is unique.
- (b) Can you find an analytic function f(z) at z=0 satisfying $f(\frac{1}{2n-1})=0$, $f(\frac{1}{2n})=\frac{1}{2n}$ for $n=1,2,\cdots,?$ Give your function if you can or give your reason if you can't.
- [8] Compute the Laurent series of function $f(z) = \frac{1}{(z-1)(z-2)}$ in annulus $\{z: 1 < |z| < 2\}$ and $\{z: 2 < |z| < \infty\}$.
- [9] Use the residuel theorem to compute the following integration:

$$I = \int_0^\infty \frac{\ln x}{(1+x)^3} dx.$$

[10] Find explicitly a conformal mapping of half disk $\{z: |z| < 1, \text{Im}(z) > 0\}$ onto the upper half plane.