Algebra Preliminary Exam

Spring 2000

- 1. How many Sylow subgroups of various orders does a simple group of order 2025 have?
- 2. For a prime number p, what is the cardinality of $GL_n(\mathbb{F}_p)$? Give two examples of distinct p-Sylow subgroups of $GL_n(\mathbb{F}_p)$.
- 3. Give an example of a semi-direct product of groups which is not a direct product.
- 4. The dihedral group D_n can be defined as the group of order 2n of symmetries of the regular *n*-gon in the plane. Write a set of generators and relations for D_n . Find two subgroups H and K of D_4 such that H is normal in K and K is normal in D_4 but H is not normal in D_4 .
- 5. Assume that for $n \ge 5$ the alternating group A_5 is simple. Prove that for $n \ge 5$ the group A_n has no subgroups of order n!/4.
- 6. Prove that any Euclidean domain is a principal ideal domain. Is it true that any principal ideal domain is a unique factorization domain?
- 7. Give an example of a Euclidean domain which is a free module of finite rank > 1 over \mathbb{Z} . Give an example of a unique factorization domain which is not a principal ideal domain.
- 8. Let K be a splitting field over \mathbb{Q} for $x^6 5$.
 - (a) Prove that the polynomial $x^6 5$ is irreducible over \mathbb{Q} .
 - (b) What is the degree of K over \mathbb{Q} ?
 - (c) Describe that Galois group of K/\mathbb{Q} as a semi-direct product.
 - (d) How many Sylow subgroups (for various primes) does it have?
 - (e) Is the extension Galois?
 - (f) Describe an intermediate field, say K', between K and \mathbb{Q} such that $K' \neq K$, $K' \neq \mathbb{Q}$ and the extension K'/\mathbb{Q} is Galois.
 - (g) What is the Galois group of K' over \mathbb{Q} ?
- 9. Given a finite field \mathbb{F}_p of cardinality q and characteristic p, prove that it is equal to the set of roots and the splitting field of a polynomial over \mathbb{F}_p . Which polynomial?