DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA PRELIMINARY EXAMINATIONS— SPRING 2000

ANALYSIS

NO AIDS.

DO ALL QUESTIONS.

QUESTIONS WILL BE WEIGHTED EQUALLY.

- 1. Let X be a metric space and $\{x_n\}_1^{\infty}$ a convergent sequence in X with limit x_0 . Prove that the set $C = \{x_0, x_1, x_2, \dots\}$ is compact.
- 2. Let n be a positive integer and $0 < \theta < \pi$. Prove that

$$\frac{1}{2\pi i} \int_{|z|=2} \frac{z^n}{1 - 2z\cos\theta + z^2} dz = \frac{\sin(n\theta)}{\sin\theta},$$

where the circle |z|=2 is oriented counterclockwise.

- 3. Suppose that f is an entire function such that $|f(z)| \leq C|z|^{1/2}$ for |z| sufficiently large. (C is a constant). What can you conclude about the form of f? Give a proof. (**Hint**: Cauchy integral formula).
- 4. Evaluate $\int_{-\infty}^{\infty} \frac{e^{-itx}}{a^2 + x^2} dx$ via residues, where a > 0. Justify every step.
- 5. (a) Is the following a Banach space (with repect to a suitable norm)?

$$B = \{f : \mathbb{R} \to \mathbb{R} \text{ s.t. } f \text{ continuous, and } \lim_{|x| \to \infty} f(x) = 0\}.$$

Justify your answer.

- (b) Suppose f is continuous, and such that $\sup |f \cdot g| \leq C \sup |g|$ for all $g \in B$. Prove that $|f| \leq C$.
- 6. (a) What is the dual of $L^3(\mathbb{R})$? Give a proof.
 - (b) Exhibit an element of the dual of ℓ^{∞} that is not in ℓ^{1} .
- 7. (a) Show that if $f \in L^{p_1}(\mathbb{R}) \cap L^{p_2}(\mathbb{R})$, then $f \in L^p(\mathbb{R})$ for all $p_1 \leq p \leq p_2$.
 - (b) Produce a function f such that $f \in L^p(\mathbb{R})$ only when p = 2.
- 8. Suppose that $h \in C^1[0,1]$ and ν is a finite Borel measure on [0,1]. Let $G(x) = \nu([0,x])$. Prove the following integration by parts formula:

$$\int_0^1 h(x)d\nu(x) = h(1)G(1) - \int_0^1 h'(x)G(x)dx.$$

(Hint: Fubini's theorem.)

- 9. Find a measure μ , singular with respect to Lebesgue measure, such that $\mu(I) > 0$ for every non-empty interval I.
- 10. Prove that there is **no one-to-one** conformal map of the punctured disc $G = \{z \in \mathbb{C} : 0 < |z| < 1\}$ onto the annulus $A = \{z \in \mathbb{C} : 1 < |z| < 2\}$.