Analysis Prelim Exam - Spring 2001

1. Prove that there exists a real valued function f, defined on a neighborhood of the origin in \mathbb{R}^2 , such that

$$f(0,0) = 0$$
 and $xyf(x,y)^2 - 2f(x,y)^4 - f(x,y) = x^2y^2$.

In problems 2-5, m stands for Lebesgue measure on \mathbb{R} .

2. Suppose that f(t) and tf(t) are in $L^1(\mathbb{R}, dm)$. Let

$$g(x) = \int_{-\infty}^{\infty} f(t) \sin(xt) dm(t).$$

Prove that g is differentiable, and find g'(x).

3. Let $f \in L^1([0,1],dm)$, and for all Borel subsets B of \mathbb{R} , define $v(B) = m(f^{-1}(B))$. Prove that for all bounded Borel functions Y on \mathbb{R} ,

$$\int_{[0,1]} Y(f(x))dm(x) = \int_{\mathbb{R}} Y(x)dv(x).$$

4. Let $g(x)=x^2$, and consider the linear map $T:L^1([0,1],dm)\to\mathbb{R}$ defined by $Tf=\int_{[0,1]}g(x)f(x)dm(x)$. Recall that

$$||T|| \equiv \sup\{|T|f|: f \in L^1([0,1],dm), ||f||_1 \le 1\}.$$

Compute ||T||. Note Verify your computation - do not just quote the Riesz representation theorem.

- 5. Let $f(x) = \frac{1}{1+x^2}$ and $g(x) = e^x$. Let $C \equiv \{f^{-1}(B) : B \text{ Borel } \subset \mathbb{R}\}$. For each $C \in C$, let $v_C(C) = \int_C g(x) dm(x)$, and $m_C(C) = m(C)$.
 - a) Prove $B \in \mathcal{C}$ if and only if B is Borel and B = -B.
 - b) Verify that $v_{\mathcal{C}}$ is absolutely continuous with respect to $m_{\mathcal{C}}$, on the σ -algebra \mathcal{C} .
 - c) Verify that g is not C-measurable.
 - d) Compute the Radon-Nikodyn derivative of v_c w.r.t. m_c .
- 6. Evaluate $\int_{\gamma} \frac{dz}{(z^2+4)^2}$ for each of the following γ . Be sure to state clearly which results you are using to evaluate the integral.
 - a) $\gamma(t) = -i + \frac{1}{2}e^{it}, 0 \le t \le 2\pi$
 - b) $\gamma(t) = -i + \tilde{4}e^{it}, 0 \le t \le 2\pi$

- 7. a) Find a linear fractional transformation which maps the upper half plane onto the interior of the unit circle.
 - b) Explicitly describe the image of the first quadrant of the unit circle under the above transformation.
- 8. Evaluate $\int_{-\infty}^{\infty} \frac{1+x^2}{1+x^4} dx$. Explain your work clearly, and justify your evaluation.
- 9. Find the Laurent series expansion for $f(z) = \frac{z^2}{z^2 9}$ valid on the annulus 2 < |z 1| < 4.
- 10. a) Prove or give a counter example to the following. There is a monic polynomial p(z) of degree n and an R > 0 such that $|p(z)| < R^n$ whenever |z| = R.