Analysis Qualifying Exam: real analysis part January, 2005

Instructions: Do all 5 problems.

- 1. Suppose A is an uncountable subset of \mathbb{R} and A' is the set of limit points of A. Prove $A \cap A'$ is uncountable.
- 2. If $0 , prove that <math>\frac{\sin x}{x^p}$ is not integrable on $(0, \infty)$, but

$$\int_0^\infty \frac{\sin x}{x^p} dx = \lim_{r \to \infty} \int_0^r \frac{\sin x}{x^p} dx$$

exists.

3. Suppose $\{f_n : n \geq 1\}$ is a sequence of continuous functions on \mathbb{R}^m with the property that for every $x \in \mathbb{R}^m$,

$$\sum_{n=1}^{\infty} |f_n(x) - f_{n-1}(x)| \le \frac{1}{1 + |x|^2}.$$

Prove the sequence $\{f_n : n \geq 1\}$ converges to a continuous function.

4. If μ is Lebesgue measure on \mathbb{R} and $f \in L(\mathbb{R}, d\mu)$, prove that F is absolutely continuous where

$$F(x) = \int_{(-\infty, x]} f d\mu.$$

5. Let f be continuously differentiable on \mathbb{R} , and suppose that f and f' are both integrable. Prove

$$\lim_{k \to \infty} \int_{-\infty}^{\infty} \sin(kx) f(x) dx = 0.$$

Analysis Qualifying Exam: complex analysis part January, 2005

Instructions: 5 problems, counted 10 points apiece.

- #1. State the most general version that you know of Cauchy's Integral Formula and then sketch a proof of the simplest version of Cauchy's Integral Formula.
- #2. Evaluate the following integral by the method of residues (with justification).

$$\int_{-\infty}^{\infty} \frac{1+x^2}{1+x^4} \ dx$$

- #3. Prove that if a complex power series $\sum_{n=0}^{\infty} a_n z^n$ converges for some $z_0 \neq 0$, then it converges absolutely in the open disk $\{z \in \mathbb{C} : |z| < |z_0|\}$ and uniformly on any closed subdisk.
- #4. State the general theorem on existence of a Laurent series and determine the Laurent series for $\frac{z}{1-z^2}$ on the annulus 0<|z-1|<1 and on the annulus $1<|z|<\infty$.
- #5. Construct a conformal mapping from $H = \{z \in \mathbb{C} : Im(z) > 0\}$ in \mathbb{C} onto $G = \{w \in \mathbb{C} : Re(w) > 0 \text{ and } |w| < 1\}$. Include a definition of <u>conformal mapping</u>, and indicate why your mapping is conformal.