Topology Qualifying Exam January 5, 2011

You have 3 hours. The grading committee will place a particular emphasis on finished and rigorous solutions for the problems, as opposed to partial attempts. Therefore, it is better to complete a smaller number of questions in the time allotted than to submit partially completed work for all the problems. Please carefully justify all of your answers.

- 1. (a) (5 points) What does it mean to say that $p: Y \to X$ is a covering map?
 - (b) (5 points) Let $p: Y \to X$ be a covering map. Prove that, for any $y \in Y$, the homomorphism

$$p_*: \pi_1(Y, y) \to \pi_1(X, p(y))$$

is injective.

- (c) (5 points) Let $p: Y \to X$ be a covering map with Y and X path-connected. Suppose that p_* is an isomorphism. Prove that p is a homeomorphism.
- 2. (10 points) Let X be the topological space obtained by identifying three distinct points on the torus $S^1 \times S^1$. Calculate the fundamental group of X.
- 3. (10 points) Let X be a topological space obtained by attaching a 2-cell to $\mathbb{R}P^2$ via some map $f: S^1 \to \mathbb{R}P^2$. What are the possibilities for the homology groups $H_*(X;\mathbb{Z})$?
- 4. (10 points) Show that $\mathbb{R}P^2 \vee S^1$ is not homotopy equivalent to a compact surface (possibly with boundary).
- 5. (a) (5 points) State the Lefschetz Fixed Point Theorem for a finite simplicial complex X.
 - (b) (10 points) Use degree theory to prove this Theorem in the case that $X = S^n$.
- 6. (10 points) Show that a compact subset of a Hausdorff space is closed.
- 7. (10 points) A topological space is *totally disconnected* if its only connected subsets are one-point sets. Is it true that if X has the discrete topology, it is totally disconnected? Is the converse true? Justify your answers.
- 8. Recall that a topological space X is said to be *regular* if for every point $p \in X$ and closed subset $F \subset X$ not containing p, there exists disjoint open sets U, V with $p \in U$ and $F \subset V$. Let X be a regular space that has a countable basis for its topology, and let U be an open subset of X.
 - (a) (10 points) Show that U is a countable union of closed subsets of X.
 - (b) (10 points) Show that there is a continuous function $f : X \to [0, 1]$ such that f(x) > 0 for $x \in U$ and f(x) = 0 for $x \notin U$.