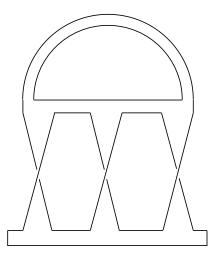
Topology Preliminary Examination August, 2009

Instructions: Work all problems. Give clear explanations and complete proofs.

- (1) (a) Show that a path-connected space is connected.
 - (b) A topological space X is *locally path-connected* if for every point $x \in X$ and every neighbourhood V of x, there is a path-connected open set U with $x \in U \subset V$. Show that a connected and locally path-connected space is path-connected.
- (2) A topological space X is normal if it is Hausdorff, and, for any pair of disjoint closed sets $A, B \subset X$, there are disjoint open sets $U, V \subset X$ with $A \subset U$ and $B \subset V$. Let A be a closed subspace of a normal space X. Show that A and the quotient X/A are normal.
- (3) Let $X = (0, 1) \times (0, 1)$, $Y = [0, 1) \times [0, 1)$, and $Z = [0, 1] \times [0, 1]$. Show which, if any, of X, Y, and Z are homeomorphic.
- (4) Let X be the topological space obtained by identifying 3 distinct points on S^2 . Calculate $H_*(X,\mathbb{Z})$.
- (5) State the classification theorem for compact surfaces and identify this surface on your list:



- (6) Find all homotopy classes of maps from $S^1 \times D^2$ to itself such that every element of the homotopy class has a fixed point.
- (7) Find the universal cover of $RP^2 \times S^1$ and explicitly describe its group of deck transformations.
- (8) Let $f: S^1 \to S^1$ by $f(z) = z^2$. Let $X = (S^1 \times [0, 1])/(z, 1) \sim (f(z), 0)$. Give an explicit CW decomposition, with attaching maps, for X, and use it to compute $\pi_1(X)$ and $H_1(X)$.