Topology Prelim January, 2010

Please do all problems.

- (1) Define an equivalence relation \sim on \mathbb{R} by $x \sim y$ if and only if $x y \in \mathbb{Q}$. Let X be the set of equivalence classes, endowed with the quotient topology induced by the canonical projection $\pi : \mathbb{R} \to X$. Describe, with proof, all open subsets of X with respect to this topology.
- (2) If X is a topological space and $S \subset X$, define, in terms of open subsets of X, what it means for S not to be connected. Show that if S is not connected there are non-empty subsets $A, B \subset X$ such that $A \cup B = S$ and $A \cap \overline{B} = \overline{A} \cap B = \emptyset$ (here \overline{A} and \overline{B} denote closure with respect to the topology on the ambient space X).
- (3) Let (X, d) be a compact metric space, and let $f : X \to X$ be an isometry (this means that d(f(x), f(y)) = d(x, y) for all $x, y \in X$). Show that f must be a surjection.
- (4) Let B^3 be a solid ball of radius 2 centered at the origin in \mathbb{R}^3 . Let S^1 be the unit circle in the *xy*-plane. Compute the homology groups of $B^3 S^1$.
- (5) Let A be a path connected subset of a path connected space X and let $i : A \subset X$ be the inclusion map. Let $p : \tilde{X} \to X$ be the universal covering map. Show that $p^{-1}(A)$ is path connected if and only if $i_{\#} : \pi_1(A, *) \to \pi_1(X, *)$ is surjective.
- (6) Give a list (together with a brief explanation) of all surfaces (orientable or not, and with or without boundary) that are homotopy equivalent to the wedge of two circles.
- (7) Prove or disprove: The fundamental group of a Klein bottle is an abelian group.
- (8) Let X and Y be finite connected simplicial complexes, and let $f: X \to Y$ and $g: Y \to X$ be basepoint preserving maps. Show that no matter how you homotop $f \lor g: X \lor Y \to X \lor Y$, there will always be a fixed point.