TOPOLOGY PRELIM, WINTER 2001

- 1. Let C be the union of line segments in \mathbb{R}^2 from (0,1) to (1/n,0) for $n=1,2,3,\ldots$ and the line segment from (0,1) to (0,0). Show that there is no contraction of C that keeps (0,0) fixed at all times.
- 2. How many path components does the group of 2×2 invertible matrices, $Gl(2,\mathbb{R})$ have?
- 3. Let X and Y be metric spaces and let $f: X \times I \to Y$ be a homotopy. Define D(t) to be the diameter of the set $f_t(X)$ (that is, it is the supremum of the distances between pairs of elements in the subset $f_t(X)$ of Y). Show that if X is compact then D is continuous. Show by example that without this assumption, D may not be continuous even if Y is compact.
- 4. Let A be a submanifold of a manifold M. Give necessary and sufficient conditions for the existence of a covering space map $p: M' \to M$ such that $p^{-1}(A)$ is not connected.
- 5. Compute $H_*(X)$ where X is the disk D^2 with three arcs identified as drawn below.

- 6. Let S be a surface of genus 2. Show that the natural map $\pi_1(S,*) \to H_1(S)$ has a non-trivial kernel.
- 7. Let $S^1 = \{v \in \mathbb{R}^2 | |v| = 1\}$. Suppose $f: S^1 \to \mathbb{R}^2 0$ is continuous and $v \cdot f(v) > 0$ for all $v \in S^1$. Prove that f does not extend to a function from D^2 into $\mathbb{R}^2 0$.
- 8. Prove that S^1 is not contractible. (Give a fairly detailed sketch of any facts you use.)