Complex analysis qualifying examination, Fall 2009

Do all problems, and justify your assertions.
Problem 1. Let f be analytic on the unit disk. Is it possible that $f\left(\frac{1}{n}\right)$ takes the following values for $n=2,3,4, \ldots$? Why or why not?
a) $(-1)^{n}$
b) e^{-n} for n even, and 0 for n odd
c) $\frac{1}{\lfloor\sqrt{n}\rfloor}$ (here $\lfloor x\rfloor$ is the greatest integer not greater than x)
d) $\frac{n-2}{n-1}$

Problem 2. Use complex analysis to prove the Fundamental Theorem of Algebra: if p(z) is a nonconstant polynomial with complex coefficients, then there exists a complex number z_{0} such that $p\left(z_{0}\right)=0$.
Problem 3. Compute the integral

$$
\int_{0}^{\infty} \frac{\cos x}{\left(1+x^{2}\right)^{2}} d x
$$

Problem 4. Give the Laurent series for the following functions, and characterize their singularities at zero (essential, removable or pole):
a) $\frac{\sin ^{2} z}{z}$
b) $z e^{-\frac{1}{z^{2}}}$
c) $\frac{1}{z(4-z)}$

Problem 5. Let D be the domain in the complex plane consisting of the interior of the unit disk, with the subdisk of radius $\frac{1}{2}$ and center $\frac{1}{2}$ removed. Construct an analytic function that maps D conformally onto the first quadrant $\Re z>0, \Im z>0$. (See figure.)

Problem 6. Give Laplace's equation in polar coordinates. In other words, if $x=r \cos \theta, y=$ $r \sin \theta$, write down a relation equivalent to

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

in terms r, θ, and the partial derivatives of f with respect to r, θ.

