4000 Day one Induction and Well ordering

The first topic we study is the natural numbers and the integers. Many
things can be deduced about them just from one simple principle, the
"well ordering principle”. This says that in any non empty set of
natural numbers, there is always a smallest number. This is intuitively
obvious, since if our set of natural numbers is non empty then it contains
some number, say 149. Then the smallest natural number in our set is
one of the numbers 1,2,3,.....,148, 149. After examining all of these
numbers to see which ones are in the set, which only takes a finite
amount of time, we can determine the smallest number in our set.
Obvious or not, we will assume this as a fundamnental fact about the
natural numbers. It should be memorized.

By the natural numbers we mean all positive integers, 1,2,3,4,5,.........

Well ordering principle: If S is anon empty subset of the natural
numbers then there is a smallest element in S, i.e. there is a number in S
that is smaller than every other number in S.

IMPORTANT: The "contrapositive” statement, which is equivalent to it,
hence also true, is that if a set S of positive integers has no smallest
element, then S is empty.

Lets apply this to show that all positive integers > 2 can be factored into
primes.

Definition: If n is an integer, we say another integer a is a factor of n, or
that a divides n, if there is another integer b such that n = ab. (Le. the
integer a divides then integer n if the answer after dividing n/a is also an

integer.)

Definition: A natural number p is prime if and only if p > 2, and the
only positive integers that divide p, are p and 1.

Note that 1 is not prime, because it is not = 2. (For reasons we will
explain later, when we prove uniqueness of prime factorization, we do not
want an integer to be prime if its reciprocal is also an integer. This rules
out 1 and -1, although they have no factors other than themselves and 1.)

Theorem: Every integer n > 2 can be written as a product of (one or
more) prime integers.

proof: The well ordering principle gives us a way to prove a set of
positive integers is empty, so we try to prove the set of positive integers
for which the theorem is false is empty.



I.e. let S be the set of all those integers > 2 which cannot be written as a
product of prime integers. Since a prime number is already written as a
product of one prime number, the theorem is true for all prime numbers,
so there are no prime numbers in the set S. By the well ordering
principle, either S is empty or S has a smallest number in it. Suppose S is
not empty and let n be the smallest number in S. Then n > 2, but n is not
prime, so n can be expressed as a product n = ab, where a,b, are positive
integers and neither one equals 1. Thus they are both larger than 1, and
both are smaller than n. Hence neither a nor b belongs to the set S, i.e.
both a and b CAN be written as products of prime numbers. If a =

pPl.----. pr and b = q1...... qs, where pj and qj are all prime, then multiplying
them together we get

n =ab = pj...... Prql-..... gs, which expresses n as a product of prime
numbers. - But this contradcits the assumption that n was in S. So in fact S
cannot have a smallest element, so then S cannot have any elements. I.e.
there are no integers > 2 that cannot be written as a product of primes.
QED.

Note this is a very theoretical argument. I.e. it does not tell you how to
actually factor any integer into primes. For example, here is a nice 28
digit integer: 1111222223333444455556666789, can you factor it into
primes? Fortunately I have copy of the program mathematica, (Maple will
do this too), and in three seconds it gives:
{{1289,1},{68636479,1},{12560097320271619,1}},

which means that the number 1111222223333444455556666789 =
(1289)(68636479)(12560097320271619), and that each of those three
numbers is prime. (The 1's in the parentheses above mean each factor
occurs once in the factorization.)

Now that might take quite a while to do by hand, and in fact if I put in a
slightly longer number, say 40 digits long, then my Mathematica won't do
it either, in any reasonable amount of time. This fact, that actual
numbers are quite hard to factor explicitly, is the basis for security codes
used in credit cards and espionage communications by the government.

Remark:

We also used in the proof above, the fact that if n = ab, and all the
integers a,b,n are > 2, then n is larger than both a and b. It gets tedious
sometimes to prove everything, but we could prove this too as follows.
We assume the product of two positive numbers is positive as a basic
property. If a > 1, and b > 0 then (a-1) > 0 so the product b(a-1) > 0.
Le. ba - b > 0soba>b. Thus if both a,b > 1, then ab > a and ab > b,
which is what we claimed.



4000/6000 Day 2
There are infinitely many primes (due to Euclid); binomial thm.

Review: We have learned the fundamental “well ordering” principle, that
a non empty set of natural numbers must have a smallest element.
Equivalently, a set of natural numbers with no smallest element has no
elements at all. As a consequence, if a statement about natural numbers
cannot have a smallest number for which it is false, then it cannot be false
for any natural numbers. We used this to prove every natural number > 2
is either prime, or can be expressed as a product of primes.

So the existence of a factorization into primes is relatively easy for
positive integers. The factorization is also unique, i.e. the prime factors
are uniquely determined by the integer n, but this is more work to prove,
and involves the concept of gcd. We will take this up soon.

Recall, assuming we know which integers are positive, that we can “order”
the integers as follows:

Definition of Ordering

Given integers a,b, we say a > b if and only if a-b > 0, i.e. a > b means a-b
1s positive.

Here is a basic property we will need.
Positivity property:
If a,b are positive integers, then a+b and ab are also positive integers.

As we saw, it follows then that

If a, b, c are integers and a > b and ¢ > O, then ac > bc.

It is also true that a+c > b+c, whether ¢ is positive or not.
exercise: derive these facts from the positivity property.

Now we give an application of the existence of prime factorization, to the
proof, given two thousand years ago by Euclid, that there must be an
infinite number of prime numbers.

Recall the definition of “divides”: We say an integer a divides an
integer n if there is another integer b such that n = ab.

The following simple principle is very useful.

Three term principle: If N = a + b, all integers, and if an integer d
divides two of the integers a, b, N, then d also divides the third.

proof: If d divides N and a, say N = dr and a = ds, then we have dr = N =
a+ b= ds + b, thus dr = ds + b, so by subtracting ds from both sides, b



= dr - ds = d(r-s), and thus d divides b. The other cases are similar.

Theorem: There are an infinite number of prime numbers.

proof:

The proof is by contradiction, i.e. we shall show the assumption there are
only a finite number of prime numbers leads to a contradiction.

Assume there are only a finite number of primes, say pi1,.....pn. Then
consider the integer N = p]....pn + 1, obtained by multiplying together all
the given primes, and then adding 1.

Claim: None of the prime numbers pi,.....,pn divides N.
proof of claim: If pj divides N and pj also divides pj.....pn, then by the
three term principle, pj also divides 1, which is false since pj > 2.

Now no pj divides N, but N > 2, so by the result of yesterday, N is a
product of primes. Thus there are primes that divide N, but none of the
primes pj do so. Hence there must exist primes other than the pj, a
contradiction to the assumption that the only primes in existence are the
pl,.....pn. Thus there must be an infinite number of primes.

QED.

Remark: This is proposition 20 of Book IX of Euclid’s Elements. It can be
found on the web (with the rest of the Elements) at

http://alephO.clarku.edu/~djoyce/java/elements/bookIX/propIX20.html
Binomial theorem
Next we discuss a topic that is useful in algebra, the binomial formula for

expanding powers of two terms. We want a formula for the product
(a+b)1, where n is a positive integer. We begin, as is always advisable, by

looking at some examples. Recall the “distributive law” for multiplication,
that a(b+c) = ab + ac.

(a+b)! = al + bl. no comment.

(a+b)2 = (a+b)(a+b) = a(a+b) + b(a+b) (why?)

=aa+ab + ba +bb = aa + (ab+ba) + bb

= a2 +2ab + b2. So this is the binomial theorem for n = 2.

What we want to do is determine why there is a 2 in front of the term ab,



and only a 1 in front of the other two terms. Apparently it is because
there are two ways to get ab, as ab and as ba, whereas there is only one

way to get a2, namely as aa, and only one way to get b2 as bb.
So what do we expect when we expand (a+b)3?

Well let’s see:

(a+b)3 = (a+b)(a+b)2 = a(a+b)2 + b (a+b)2 =

a(aa + ab + ba + bb) = b(aa + ab + ba + bb) =

aaa + aab + aba + abb + baa + bab + bba + bbb =

aaa + (aab + aba + baa) + (abb + bab + bba) + bbb

a3 + 3a2b + 3ab2 + b3. This is the binomial theorem for n = 3.

Here the first 3 is because there are three ways to get a2b, namely as

aab, aba, and baa. @ Namely there are three positions, and only one of
them should be a “b”, so the number of terms corresponds to the number
of ways to choose which position to put the “b”. l.e. either the b is first,
second, or third.

Now what about (a+b)4? There should be terms for a4, a3b, ab3, and 54.
How many ways are there to get a4? Only one, and also one for b%.

So we have terms a4 and b%.

Now what about a3b?  There are four places here in the product and only

one should be a “b”, so how many ways can this happen? Four ways it
seems, since there are four ways to choose where to put the b.

L.e. aaab (last, i.e. fourth), aaba (next to last, i.e. third), abaa (second) ,
or baaa (first). So we should have

a4 + 4a3b + 77a2b2 + 4ab3 + b4,

Now what is the ?? coefficient of a2b2?



(1P

We have four places to fill and two of them should be “a’s”. So how many
ways are there to choose where the two a’s go?

I.e. aabb, abab, abba, baab, baba, bbaa. This seems to be all possibilities.
So we get at + 4a3b + 6a2b2 + 4ab3 + b4,
Now for (a+b)5 we should get ad + 5a4b +7a3b2 +7a2b3 + 5ab% + bd.

And the coefficient of a3b2 should be the number of ways to choose two
places from 5 possible choices (where to put the b’s). And the coefficient

of a2b3 should be the number of ways to choose 3 places from among 5
choices (where to put the b’s). But it is equivalent to know where to put
the two a’s, so these coefficients are the same.

Definition: Now define the symbol (:) to be the number of ways to

choose k objects from among n possible choices, where n > 1 and 0 < k <
n, and k, n are both integers. This symbol is called the binomial
coefficient “n choose k”, and we have seen it is the coefficient of both

akbn-k and also an-kbk in the expansion of (a+b)?. Notice there is only
one way to choose zero objects, and only one way to choose n objects,

. n n n n
from among n things, so ( J =1= ( ) In general ( J = [ )
0 n k n-k

Then we have the formula.
Binomial theorem 1:

(a+b)N = an 4 pan-lp +----(:Jakbn'k + o + nabn-1 4 pn

n
= Yy " akpk
=0k

Important: This is only half the binomial theorem. To make it useful,
we need an explicit formula for the symbol (:)

Definition: If n is any positive integer, then n! = n(n-1)(n-2)(...... )(2)(1),



read “n factorial” is the product of n with all smaller positive integers. If
n = 0, then 0! = 1.

Then the other half of the binomial theorem is this.

Binomial theorem 2: For any integer n > 1, and any integer k with 0 <

n!

k < n, we have (n) = —.
k kW(n-k)!

We have two concerns, 1) how do you come up with such a formula, and
2) how do you prove it? The good part about induction is it is useful for
proving things even if you have no idea how they were thought of or why
they are true. It just works like magic. So we try to prove the second part
of the theorem using induction on the number n. First we introduce
another version of induction, not because our old one wouldn’t work
here, but because we need to review the other method anyway.

Principle of induction: Suppose we have a statement we can make
about natural numbers. Suppose the statement is true for the number 1,
and suppose that whenever it is true for any one natural number, it is also
true for the next. Then the statement is true for all natural numbers.
Proof: This follows, by contradiction, from the well ordering principle as
follows. If there were any natural numbers for which the statement is
false, then there is a smallest one, say n. But the statement is true for 1,
so n 2 2. Since n is the smallest number for which the statement is false,
it must be true for n-1. But then by the assumption above, the statement
is also true for the next number, namely n, a contradiction. Since there
cannot be a smallest number for which the statement is false, there
cannot be any numbers for which the statement is false. QED.

I.e. to use this, check the statement holds for n=1, and then assume n is
any integer > 1, and the statement holds for this one integer. then try to
show it also holds for the next integer n+1.

Abstract Principle of induction:

If S is a subset of natural numbers, and S contains 1, and if whenever S
contains any integer k, then S also contains the next integer k+1, then S
contains all natural numbers.

n!

= ———. First check it for n =
kW(n-k)

n
Now we use this to prove the formula (k)



1. If n = 1, then the only possible values of k are 0 and 1, so we must

1 ! 1 ! . o
prove that = ——1-'———, and - We leave it as an exercise in
0 0'(1-0)!

1) 1a-pr
reviewing the meanings of these symbols, that these numbers are all 1.

n!
" kNn—k)!
for all values of k such that 0 < k < n. Then consider the case n+1, and 0
< k € n+l.

Now assume that n > 1 and that we have proved the formula (:)

+1 !
We want to prove (n ) = D)

k) kln+l1-k)
Somehow we need to reduce this to a case we already know, for the

] ) n+l1
number n and k < n. Now the case k = n+1 is easy since we know ( +J =
n

+1
1. (Why??) Also the case k = 0 is easy since (no ) = 1.

So assume 1 <k < n.

+1
Now recall that (nk Jmeans the number of ways to choose k things from

n
among n+1 choices, and (k) means the number of ways to choose k things

from only n choices. How can we relate these two? One way is to recall
that n+1 is > 2, and to designate one special object in our set to ignore,
leaving only n other things to choose from. Then we can choose k objects

n , .
from among these. That gives us (k) choices. But these choices are the

ones that do not include our one special object, so now we must count the
choices that do include that object. How many are there of those? Well
we choose that one special object first, and then we have to make the
other choices from among the remaining objects, so there are k-1 more

n

objects to choose from among n objects. So this gives (k J more

choices. Thus the total number of ways to choose k things from among
n+1 things, is the sum of the number of ways which do not include the

special object, that’s (Zj ways, plus the number of ways that do include



the special object, and that is (knlj more ways. This proves the useful

Lemma: For all positive integers n, and all integers k with 1 < k < n, we
h n+ly  (n N n
Yl e )T T k=)

Now using this lemma we can finish the argument. I.e. by induction we
may assume the formulas we want have been proved for n and all
inetegers k with 1 < k < n, so we have 0 < k-1 < n, so we know both

n! n!

n n! n '
= ———, and also = = .
(k) ki(n-k)! (k—l) k-Dn-(k-D)!  (k-DW(n-k+1)!

Now all we have to do is add these formulas and see if we get the desired
one. That is the beauty of induction, once we come up with the formula,
even if we do not understand why it is true, we can check it anyway!

) n+1 n n
So here we go, purely by calculating we get ( k ) = (k) + (k—l)

n! n!
= +
k(n—-k)!  (k-DWn—-k+1)!
common denominators, so we must multiply the left side bottom by (n-
nln—k+1) + nlk
kKin-k+1)!  ()(n-k+1)!

, now we are adding fractions so we must find

k+1) and the right side bottom by k, getting =

nn—-k+D+nlk _ nln-k+1+k)
k(n—k +1)! k'(n—Fk+1)!

now we can add the tops to get

nntl) D! (n+D)!

= = = . This what we wanted. QED.
ki(n—k+1)! ki(n—k+1)! kW (n+1-k)!

Problem: Where does this formula come from? I.e. how do we
understand why it is true, and how would one discover it?



4000. Day 3, Toward uniqueness of prime factorization

We return to the question of factoring natural numbers into primes. We
have proved it is possible for all n > 2, but we left open the question of
uniqueness of the prime factors that are obtained. I.e. for all we know, an
integer might have several different prime factorizations. The precise
statement is this.

Uniqueness of prime factorization

If n > 2 is an integer, and n = p]....pr = q1.....qs are two factorizations of n
into prime factors, i.e. if all the p’s and all the q’s are primes, then the
prime factors pi,....,pr are the same as the prime factors qi,...,qs , except
possibly for the order in which they occur. Moreover each prime factor
occurs among the p's the same number of times as among the ('s.

Ie. if n = p1....pr = q1.....qs are two factorizations of n into prime factors,
then r = s, and the factors qj can be renumbered so that for every
subscript i, we have pj = qj.

proof: (This proof also appears in the Euclid.) Suppose we try to prove
this by induction say on the number s of factors qj. Let’s begin with s = 1,
so that we have n = p1....pr = q1. But since q] is prime, it cannot be
written as a product of two or more factors all > 2. Since all pj = 2, there
is only one of them, sor =s = 1, and we have n = p] = q1 and we are
done.

We need an elementary fact you no doubt already believe.

The cancellation property.

If a,b,c are positive integers, and ab = ac, then b = c.

proof: If not then say b > c. Then (b-c) > 0, so by the positivity property,
also a(b-c) > 0, so then ab-ac > 0, so ab > ac, a contradiction, since we
assumed ab = ac. QED.

Remark: The cancellation property also holds for any integers a,b,c such
that a # 0.

Now assume that we have proved the uniqueness theorem for a given
value of s = k > 1, and we try to prove it for s = k+1. So assume
n=pl...pr=9q1..... gk+1- If we could only cancel one common prime
factor from both sides we would be done by induction. I.e. if we could
prove that pr equals one of the q's, then we could renumber the q's until
the one equal to pr is qk+1, i.e. then we could assume that pr = qk+1.

Then we would have pl....pr-1pr = 4qil-..-. gkpr. and after cancelling pr on
both sides, by the cancellation property, we would have pj....pr-1 =



Now with only k factors on the right side, and r-1 on the left, we could use
the induction hypothesis to conclude that k = r-1, so we would get
p1l....pk = ql.....qk and also that the primes qi,....,qk can be renumbered
until q1 = p1, ..... ,gk = pk- Then since also qk+1 = pr = pk+1 we would be
done.

This is what we need for the inductive step: We need to show that
whenever p1....pr = q1..... qdk+1, then pr equals one of the primes qj on the
right side.

The following important result due to Euclid would do the trick.
Divisibility property of primes.
Proposition: If p is a prime number, and p divides a product Ha,. =

i=1

al....ap of integers, then p divides at least one of the factors aj.

Le. if we assume this proposition, and let n = pi....pr = q1.....qs, be two
prime factorizations of n, then since pr divides n, then pr divides the
product qi.....qs, so then by the divisibility property, we could conclude
that pr must divide one of the factors gj. But since qj is prime, the only
way pr could divide it is if qj = pr. Then we could cancel pr from both
sides and finish with the inductive proof above.

Thus to finish off the proof of the uniqueness of prime factorization, we
need to prove the previous divisibility lemma for primes.

We claim it suffices to prove the divisibility property for two factors.
Divisibility Lemma: If p is a prime number, and p divides the product
ab of any two positive integers, then p divides at least one of the factors a
or b, (possibly both).

Corollary: 1If p is a prime number, and p divides a product Ha, =
i=1
al....an of integers, then p divides at least one of the factors aj.
Proof: Assuming the lemma, the corollary is proved by induction on the

number of factors. I.e. if there are two factors in the product Ha,. then
i=1

the corollary follows immediately from the lemma. Now assume the

corollary proved for n-1 factors and assume p divides aj....ap. Then write



this product as a product of two factors, i.e. then p divides the product
a]....an = aj(a2....an), where one factor is the product (a2....ap). It
follows from the lemma that either p divides a], and we are finished, or
else p divides (a2....apn). Since (a2....apn) is a product of n-1 factors, then
by the inductive hypothesis, p divides one of the aj with 2 <i < n, so we
are done again. QED.

- Remarks: In future we will assume the reader can do the inductive
argument to extend such results from the case of two factors to the case
of any finite number of factors, so it is wise to practice by learning this
one. But the hard part is to prove it for two factors. Il.e. all our previous
proofs were pretty much automatic just using induction. This one is not
so easy. We need to use something clever to help out with the inductive
step. Fortunately the following clever argument was thought of a couple
thousand years ago by the Greeks, and recorded in Euclid's book.

Greatest common divisors.
To prove the divisibility lemma, which is not at all trivial, we need the
concept of the greatest common divisor of two integers.

Definition: Given two positive integers a,b, their greatest common
factor, or gcd, is the largest integer that divides both of them.

Since each factor of a is less than or equal to a, there are only finitely
many factors to consider, as possible common factors. Moreover 1 is
always a common factor. So there are some common factors but only a
finite number, so looking at all common factors we eventually can find
the largest one, so the gcd does always exist and is unique. (In fact any
two integers, not necessarily positive, have a gcd, as long as they are not
both zero. What integers divide into zero?)

Now we need an interesting fact about gcd's which to me is not at all
obvious. Recall the old problem about measuring water in buckets of
various sizes. l.e. suppose you have two buckets that hold 3 quarts and 8
quarts respectively, and you want to measure exactly one quart of liquid.
How would you do it? Well you could fill up the 3 gt bucket three times,
and then pour off into the 8 qt bucket, filling the 8 qt bucket and leaving
exactly 1 qt in the 3 qt bucket. This says that 3x3 - 8 = 1.

Now if you had a 2 quart bucket and an 8 qt bucket, how would you do it?
It is not hard to believe after a while, that no matter what you do, you will



always have an even number of qts left in each bucket, so you can never
get 1 gqt. But you can get 2 qts, of course.

What about a 14 qt bucket and a 20 qt bucket? What is the smallest
amount you can measure? Well, you could pour 14 qts from the 14 gt
bucket into the 20 qt bucket, refill thel4 qt bucket and pour 6 qts into
the 20 qt bucket, filling it and leaving 8 qts in the 14 qt bucket. Then
empty the 20 qt one and pour in the 8 qts from the 14 qt bucket. Then
refill the 14 qt bucket and pour off 12 more qts into the 20 qt bucket,
filling it and leaving 2 qts in the 14 qt bucket. Since both buckets hold an
even number of qts, this is the smallest number you can get.

Following through the procedure we used, gives the formula
14 - {20 - [2(14) - 20]} = 2, or 14 -20 +2(14) -20 = 2, i.e. 3(14)-2(20) = 2.

What if you had a 12 qt bucket and a 21 qt bucket? What do you think is
the smallest number you can get? I claim it is 3 qts. Why? Do you have a
guess as to the general pattern? Can you use the equation 2(12)-21 = 3 to
help you? (Fill the 12 twice and pour off as much as possible into the 21
both times, leaving 3 in the 12 the second time.)

OK the thing to notice is that the smallest quantity you can get from the
two -buckets is their greatest common divisor! Then the second thing to
notice is that this means that whenever d is the gcd of a and b, then we
should be able to solve the equation d = ax + by, for some integers x,y,
which are not necessarily positive.

We are ready to prove this, and this even gives us a clue how to proceed,
using the well ordering principle.

Greatest common divisor Proposition.

1. If d is the gcd of a,b, then there exist integers n, m, not necessarily
positive, such that d = an+bm. In fact d is the smallest positive number of
form an+bm, when n, m range over all possible integer values.

2. Every common factor of a and b divides gcd(a,b). l.e. if d = gecd(a,b),
and if some integer e divides both a and b, then e divides d.

Note: Property 2. says that the gcd of a and b is not only larger than all
other common factors of a and b, but it is a multiple of all other common
factors. Notice also that property 2. is an immediate corollary of
property 1. using the three term principle. I.e. if d = an+bm, and if e
divides both a and b, then e divides the two terms on the right side of the
equation d = an+bm, so e also divides the third term, i.e. e divides d.



Math 4000/6000. Day 4, GCD's and their properties.

Recall the main result.

Greatest common divisor Proposition.

1. If d is the gcd of a,b, then there exist integers n, m, not necessarily
positive, such that d = an+bm. In fact d is the smallest positive number of
form an+bm, when n, m range over all possible integer values.

2. Every common factor of a and b divides gcd(a,b). lLe. if d = gecd(a,b),
and if some integer e divides both a and b, then e divides d.

So the main thing is to prove part 1., that gcd(a,b) can be obtained as the
smallest number of form an+bm, with n,m integers. To prove this we
need to understand division of integers, and the concept of a remainder.

Recall that division is often called "repeated subtraction". IL.e. to divide a
smaller integer a into a larger one b, we subtract the smaller integer a
from the larger one b, as many times as possible, and when the result is
too small to subtract again, i.e. when the result r of the subtraction, is less
than a, we call that result r = the "remainder". Then we have written b as
a certain number of copies of a, plus a remainder r. So we get b = ak+r,
where 0 < r < a. We allow r = 0, because this is the important special case
where a divides b "evenly".

From looking on the Euclid web site mentioned earlier, one learns that the
‘Greeks used the word "measures” instead of the word "divides". They
were apparently thinking in terms of using a as a unit, and using it to
measure b. Thus if a divides b evenly, then b could be exactly measured
in terms of the unit a.

This leads to a geometric picture of the process of division, or repeated
subtraction, as follows.

r
N

1 g ¢ ¢ < - \

r { 7 ) ] 7 l

0 a 2a 3a da b Sa

This picture illustrates dividing "b", or measuring b, using a length "a", as
measuring unit. We lay off copies of a repeatedly, and stop just before we
would go past b, and in this example we get the equation b = 4a + r. We
have not shown the length "1" in our picture, but assuming a and b are
integers means they are both multiples of "1", i.e. there is a length "1"



that can be used to measure both a and b, and it follows from the three
term principle, that the remainder r in that case is also an integer, i.e. r
can be measured by the same length 1.  That is, if b = 4a+r, then any unit
which measures a and b, i.e. which divides both a and b, also divides, i.e.
measures, r as well.

Thus the Greeks were interested in knowing which lengths could measure
other lengths. If we start with only a single length, say a, then the only
lengths which can be measured with it are multiples na of a. But what if
we start with two lengths say a and b, and we ask which lengths we can
measure using both of them? First of all assume that these are both
integer lengths. i.e. that there is some unit length called u or 1, such that
both a and b can be measured by multiples of u. Then we can ask two
types of questions.

1) Which lengths can be measured using both a and b, (but not
using u). E.g. what is the smallest length that can be measured
using both a and b?

This is the kind of problem we looked at before, of measuring water
amounts with two buckets.

2) Which lengths can be used to measure both a and b? In
particular what is the largest length which can be used to
measure both a and b?

This is equivalent to asking for the greatest common divisor, or greatest
common measuring unit, valid for both a and b.

The discovery of the Greeks was that these two questions have the same
answer! l.e. It turns out then that the smallest length d, which can be
measured using both a and b, can also be used to measure both of them!
Moreover d is the largest length that will measure both a and b.  So there
is a kind of reciprocity here. Il.e. the smallest length d that can be
measured using both a and b, is itself the largest length that will measure
both a and b. Note at least that if d is the gcd of a and b, i.e. if both a and
b can be measured using d, then anything that can be measured using a
and b can also be measured using just d. Thus every length of form
ax+by, is some multiple of d. So question 1 becomes "what multiples of d
occur in the form ax+by"? I.e. what is the smallest multiple of d that we
can express as ax+by for some integers x and y? It is plausible to guess
that all multiples of d occur, i.e. that d itself occurs as such a multiple,
and this is in fact the case. (What other multiple would be more likely?



6d? ad? bd? there really is no more natural guess, and in mathematics the
most "natural” guess is often correct, at least if you have a well developed
sense of what is natural.)

It follows then that if d is the smallest length that can be measured using
both a and b, then the other lengths that can be measured using both a
and b, are just the various multiples of d. I.e. since d can be used to
measure a and b, it can also be used to measure anything they will
measure. So anything you can measure using a and b could be measured
using d, i.e. it is a multiple of d. But d itself can be measured using a and
b, so things that can be measured using both a and b, are the same as
those things that can be measured using just d. Thus using two measuring
sticks is no different from using one, if you pick the right one.

All this assumes however that our two measuring sticks were known to
have integral length, i.e. they could both be measured using some
common unit length. What if we take any two lengths, is it true that there
is a common measuring unit? Le. do any two lengths have a greatest
common measuring unit? Given any two lengths a and b, is there always a
unit length u, such that a is an integer number of copies of u, and also b is
some integer number of copies of u?

The Pythagoreans initially assumed this was true, and were shocked, even
resorting to murder it is said, to keep it quiet, when they learned
otherwise. I.e. it was learned that the side of a square and the diagonal of
that same square cannot be measured by any common unit length, i.e.
these two lengths are “incommensurable”. This led to the discovery of
irrational numbers in algebra.

Lets get back to our current train of thought, proving the two questions
above have the same answer. First we need to discuss what happens
when trying to measure one length using another (commensurable)
length, i.e. what happens when we try to divide one integer by another?.

Here then is a statement of the fundamental property of division.
Division theorem for integers. If a, b are any two positive integers,
then there are non negative integers k, r such that 0 < r < a, and b = ak+r.
Proof:

Just let r be the smallest non negative integer which can be written as
b-ak, where k is a non negative integer. Certainly the set of such integers
of form b-ak contains some non negative integers since we can take k = 0
and then b-ak = b > 0. If O can be written as b -ka, then take r = 0. if not
then the set of numbers that can be so written is a non empty set of



natural numbers, so a smallest one exists by the W.O. principle.

(In Euclid's original proof he thought this part was as obvious as most of
us think it is, and so he apparently left out this W.O. step in the argument.
But today we are extremely thorough, because we have more experience
with strange number systems where some of these properties fail, so we
have learned to always cultivate a habit of being very clear about what
properties follow from which other properties, in order to better know
what is true in a new situation.)

Now we claim that if r is the smallest non negative integer of form r = b-
ak, then r < a.

If not, then r > a >0, so r-a > 0, so we may write b-ak = r = (r-a) + a.

Then (r-a) = b - ak -a = b - (ak+a) = b - a(k+1). Then r-a can also be
written in the form b - ax, and r-a is also non negative.

Moreover, since a > 0, by adding r to both sides, we get r+a > r, ]

hence r > r-a =2 0.

This contradicts the fact that r was the smallest non negative integer of
form b -ax, where x is an integer, since r-a can also be written this way.
QED.

Remark: To picture the last part of the argument, notice that assuming r
> a >0, just means that after laying off k copies of a, we still have a
remainder bigger than a. That means we have room to lay off another
copy of a and still have a non negative remainder.

Exercise: The integers k,r in the division theorem are unique. le. if b =
ka + r = qa+s, where a,b, k,q are integers, and a > r,s 2> 0, thenr = s, and
k =q.

Remark: The division theorem is also true for not necessarily positive
integers a,b, as long as a # 0. lLe. given any two integers a,b with a # 0,
there exist unique integers k,r, with 0 < r < |a|, such that b = ak + r.
(Here k may be negative, but r has to be non negative and less than the
absolute value of a, to get the uniqueness statement.)

Now we are ready to prove the GCD proposition. Recall the statement.
Greatest common divisor Proposition, part 1.

1. If d is the gcd of a,b, then there exist integers n, m, not necessarily
positive, such that d = an+bm. In fact d is the smallest positive number of



form an+bm, when n, m range over all possible integer values.
Proof. Given a,b, consider the smallest positive integer d of form d =
an+bm, where n,m are integers. (Why does such a d exist?)

Then either d divides both a and b or not. If d does not divide say a, then
by the division theorem, at least a = dk+r where 0 < r < d, and k,r are
integers.

Then since d = an+bm, by substituting for d, we have a = (an+bm)k+r =
ank+bmk+r, so r = a - (ank+bmk) = a(l-nk)+b(-mk).

This shows that r can also be written in the form ax+by where x,y, are
integers. But this is a contradiction since 0 < r < d, and no non negative
number smaller than d could be so written.

We have proved that the smallest non negative integer of form d = an+bm,
where n,m are integers, does indeed divide a, and the same type of proof
shows it also divides b. QED.

We know every integer = 2 has at least one prime factor, but two different
integers may have no common prime factors. If they do not we call them
"relatively prime". This a crucial notion.

Definition: Given two integers a,b, we say they are "relatively prime" if
and only if the only common factors they have are 1 and -1.

Remark: Two integers are relatively prime, if and only if they have no
common prime factors, if and only if their gcd = 1.

proof of remark: If they have no common factors except 1 and -1, then
none of their common factors is prime. Conversely if they do have some
common factor other than 1 or -1, then they have a positive common
factor, and it in turn has a prime factor, which is then a common prime
factor. If their ged is 1 then they have no common factors larger than 1,
hence the only common factors are 1, -1. If the only common factors are
1,-1, then the largest one is 1. QED.

Now we get the tool we need.

Corollary: Two integers a,b, are relatively prime, if and only if the
equation ax+by = 1, has some integer solutions for x,y.

proof: If one can solve it, then 1 is the smallest positive number of form
ax+by, hence 1 = gcd(a,b). Conversely, if 1 = gcd(a,b), then one can solve
the equation ax+by = 1, by the GCD proposition. QED.



At last this tool enables us to prove the basic divisibility result.

lemma: If a,b are relatively prime, and if n 1s any integer such that a
divides bn, then in fact a divides n.

proof: I always thought this proof was really slick, as a student. All I can
say to help remember it is this. Whenever you have two relatively prime
numbers, a,b, it helps to write down the equation ax+by = 1, first off.

Now after that, the trick is to introduce the number bn in the theorem, by
multiplying this equation by n. I.e. then we get axn + byn = n. Now we are
done by the three term principle. lLe. a divides axn, and by hypothesis, a
divides bn, hence also byn, so a also divides the third term, namely n.
QED.

Next we get what we needed for the inductive proof of uniqueness of
prime factorization.

Divisibility property of primes: If p is prime and p divides ab, then
either p divides a or p divides b.

proof: If p divides a we are done, if not then p and a have no common
prime factors, so they are relatively prime. Since p divides ab, by
hypothesis, then by the previous lemma, p must divide b. QED.

This finishes Euclid’s proof of the uniqueness of prime factorization.



4000/6000 Euclidean algorithm

It can be useful not just to know that two numbers have a gcd, but to
know exactly what it is, and to have an easy way to compute it. There is
an easy way, due to Euclid, based on the idea of measuring lengths using
two other lengths. This involves a refinement of the idea of the three
term principle.

Suppose we start with two commensurable lengths a and b, i.e. both a and
b are integer multiples of some given unit length. We are interested in
finding the smallest length that can be measured using both of them. Now
a length can be measured using both a and b if that length can be written
as a multiple of a, possibly negative, plus or minus a multiple of b, i.e. as
an integer multiple of a, plus an integer multiple of b, where the integer
multipliers may be negative. So in algebraic terms we are looking at
numbers of form ax+by where x and y are integers. Hence we are trying
to find the smallest number of form ax+by, for any integers x and y.

Think in terms of measuring. Suppose d = ax+by. I.e. d can be measured
using a and b. Then anything that can be measured using d could also be
measured using a and b, since we could use a and b to measure of copies
of d repeatedly. We want to know when any two of these terms a,b,d, can
be used to measure the same lengths. I.e. if d = ax+by, then anything
measurable by d can be measured using a and b, and anything measurable
using a and d could thus also be measured using a and b. But what about
the converse? Can anything measurable by a and b also be measured
using a and d? For example can you get b, just using a and d?

This is not so clear. In algebraic terms, we have the equation d = ax+by,
but try to solve this equation for b. We get by = d - ax, but how do we get
rid of the coefficient y in front of b? But what if we had an equation like
d = ax+b. Then we could solve for b = d-ax, i.e. we could measure b using
only a and d. Since we could also measure a using a and d, we could then
measure anything using a and d that we could measure using a and b. So
the point is to have an equation that has a coefficient of 1 or -1 in front of
b, if we want to be able to eliminate b, and still measure the same lengths.
L.e. if we have the equation d = ax+b, then we can eliminate either d or b
and still measure the same lengths. I.e. the three term principle here
would say that a and b measure the same lengths as a and d.

So the three term principle would say that if you have an equation like
ax+by = cz, then you can eliminate the number whose coefficient is 1 or
-1, and not change the lengths you can measure.

Now this is exactly the kind of equation you get when you divide one



length by another. ILe. suppose we start with two lengths a and b, and
want to know what lengths we can measure, in particular we want to know
the shortest length we can measure. Supposing a < b, if we divide a into b
we get an equation like b = ax + r, where 0 < r < a. Now in this equation,
both b and d occur with coefficient 1, so we can eliminate either one and
not change what lengths we can measure. Thus the lengths we can
measure with a and b, are the same as the ones we can measure using a
and r.

So we can forget about b, and consider the two lengths a and r. This is
closer to finding the shortest length we can measure since a and r are
smaller numbers than a and b. So we repeat the process to get still
smaller numbers. l.e. we divide a by r, getting an equation like a = ry+s,
where 0 < s < r. Now a and r measure the same numbers as r and s, so we
can eliminate a, and keep just the smaller numbers r and s. Since the
remainder keeps getting smaller, eventually it becomes zero, and we get
something like r = ts + 0. Then s actually measures r. Since r and s
together measure the same numbers as the original pair a and b did, and s
measures r, we do not need r at all, and in fact just s measures the same
lengths as the pair a and b. In particular s measures both a and b, so it
divides them.

On the other hand, a and b together measure the same numbers as r and
s, so a and b measure s. I.e. there is some equation of form s = au+bv,
where u and v are integers, possibly negative. Thus since any number that
divides both a and b, must by the old three term principle also divide s, it
must also be smaller than s. Thus we have again proved not only that s is
the largest common divisor of a and b, but that all other common divisors
of a and b divide it. This time into the bargain, we have actually found a
procedure for computing the gcd of a and b.

Just try it to see how easy it is. l.e. say a = 14 and b = 19. Then 19 = 14 +
5, so replace 14 and 19 by 14 and 5. Now 14 = 2(5) + 4, so replace 14 and
5by4and 5. Now 5 =4 + 1, so replace 4 and 5 by 4 and 1. Now 1

divides 4 so discard 4 and keep only 1, the gcd of 14 and 19.

Or try 68 and 142. We get 142 = 2(68) + 6. Now 68 = 11(6) + 2. Now 6
= 3(2), so 2 is the gcd of 68 and 142.

Try 8,439 and 615. We get 8,439 = (13)615 +444. Then 615 = 444 +
171. Then 444 = 2(171) + 102. Then 171 = 102 + 69. Then 102 = 69 +
33. Then 69 = 2(33) + 3. Now 33 = 11(3), so 3 is the gcd of 8439 and
615. (I did these in my head, but not too quickly. It is easy to believe that
computers can calculate gcd’s extremely quickly.)



Five characterizations of GCD’s

It is useful to have several different ways of describing the same
thing. One description may be useful for calculating efficiently, another
for geometric understanding, another for certain applications, and so on.
The concept of a greatest common divisor has many such descriptions.
The first is given by the name, i.e. the g.c.d. of integers a and b is the
largest of the integers that divide both of them. But we have seen other
descriptions too, and a different one is given in the book as the
“definition” of a gcd. The book says (p.13) a gcd of a and b is a positive
integer d such that d divides both a and b, and such that every integer
that divides both a and b divides d.

So the simpler definition says only that d is a common divisor, and
that every other common divisor is smaller than d. The second definition
is more sophisticated, it says not only is every other common divisor
smaller than d, but in fact every other common divisor is a factor of d.
The problem with this definition is that it is not obvious there is any such
number. I.e. it is not obvious that the largest common divisor really is
divisible by every other divisor, so that must be proved in order to justify
the existence of the gcd. The book chooses to prove that fact first, and
then given the definition afterwards.

I prefer to give the naive definition, and then prove as a theorem
that the gcd has the special property given in the book. My hope is that
by always doing things in the least sophisticated way, they are easier to
understand. It takes longer to do this, but I hope it is justified by better
understanding, and longer retention time.

So our definition is the simplest, but the books version is useful in
applications. We also need a good way to calculate a gcd in practice. This
is where the Euclidean algorithm, built on the division algorithm comes in.
We give now all the ways we have of describing a gcd of two natural
numbers.

Theorem:

Let a,b be natural numbers (i.e. positive integers). Then a natural number
d is the gcd of a and b, if and only if one of these equivalent properties
holds:

1) d divides both a and b, and d is the largest integer that divides both a
and b.

2) d divides both a and b, and every other integer that divides both a and
b, also divides d.

3) d is the smallest positive integer that can be written as a “linear
combination” of a and b. I.e. there exist integers X,y, (not necessarily
positive) such that d = ax+by, and every other positive integer that can be
written in the form an+bm, with n,m, integers, is larger than d. (In the



original Greek conception, using geometry, d is the smallest length that
can be measured using two measuring sticks, of lengths a and b.)

4) Consider the following procedure. Begin with two positive integers a
and b, with a smaller than b. Divide b by a and let r be the remainder. If
r >0, replace a and b, by the pair a and r, where r is less than a. Divide a
by r and let s be the remainder. If s > O, replace a and r by the pair r and
Si eevinnnn Continue until the remainder is zero. As soon as the remainder
of this process becomes zero, the last number divided by (the previous
remainder) is the gcd of a and b. For example, if the first remainder r is
zero, on dividing b by a, then a is the gcd. If the second remainder s is
zero. on dividing a by r, then r is the gcd.

5) Suppose a, and b are given integers, and let pi,....,pr be the primes
that occur as a factor of either a or b. I.e. all these primes are different,
and we include a prime p in our list if either p divides a, or p divides b.
Then we can write the prime factorization of a, uniquely as a =

p181.----prAr, where some of the exponents may be zero. We may also

write the prime factorization of b as b = p1M1.....prMr, where again some
of the exponents are zero. For each index j, i.e. each prime pj, let sj =
min(nj,mj) be the smaller of the two exponents, that with which pj occurs

in a, and that with which pj occurs in b. Then d = p181..... prdr, is the gcd
of a and b.

Remarks:

Notice these descriptions yield completely different ways of
calculating a gcd. The first one asks us to locate all common prime
factors of a and b, see which is the largest. This could be time consuming,
since two numbers can have a lot of common factors. The second
condition would be even more difficult to carry out, since we would have
to test the largest common factor to see if it were divisible by all the other
factors, possibly very impractical. Condition 3 is completely unworkable,
since it asks us to look at all the infinitely many linear combinations
ax+by that can be formed from all integers x and y, and see which is the
smallest positive one. This seems largely hopeless. Condition 4 is very
fast and efficient, and yields a result by hand very quickly. So although it
1s not obvious at first why the result of this computation is the gcd, once
one knows it, one can get the result quickly and efficiently. The third
description on the other hand is useful in proving the fact that the gcd is
divisible by all other common divisors. It also allowed us to prove the
divisibility property of primes. So each description has its uses. The 5th
description is to be proved by you as an exercise. It is somewhat
computable, once you find the prime factorization of both numbers, but
is usually not as fast as #4.



Example: Consider the integers 1278 and 371. To find their ged, by
property 4, we divide 371 into 1278 getting 3 with remainder 165. Then
we replace the pair 1278 and 371, with the pair 371 and 165. Now divide
165 into 371, and get 2 with remainder 41. Then we could quit since 41
is prime so the gcd of 41 and 165 is 1, since 41 does not divide into 165.
But if we continue, we divide 41 into 165 getting 164, with remainder 1.
Now we are done. l.e. 1 divides into 41 with remainder 0, so the last
number divided by, namely 1, is the gcd. Of course if you get down to 1,
you know you are done, since no smaller positive number is possible.

We can also define gcd’s for pairs integers that are not positive, as
follows (as long as they are not both zero). If a is a positive integer, then
the gcd of a and 0, is a. Notice this is the largest of the common divisors
of a and 0. If a and b are both positive integers, then the gcd of -a and b,
or of -a and -b, is the same as the gcd of a and b. Again gcd(-a,b) =
gcd(a,b) is the largest of the common divisors of -a and b. The pair of
numbers 0 and 0, do not have a gcd, since every integer, no matter how
large, divides both 0 and 0. For this pair, descriptions 1 and 3 would be
different, since only O can be obtained as a linear combination of 0 and O.
Property 3 still holds for any pair of integers a,b (not both zero). I.e.
whether a and b are positive or not, if d is their gcd, then there exist
integers X,y, such that d = ax+by.

Why does the Euclidean algorithm (condition #4) work?

The correctness of procedure #4, is based on property 3, of linear
combinations. l.e. suppose we know a < b, and that d = gcd(a,b), is the
smallest positive number that can be obtained as a linear combination of
a and b, with integer coefficients. Then divide b by a, getting b = an+r
where r 20. If r = O, then a divides b. So a is a common divisor of a and
b, and there can be no larger divisor of both a and b, so gcd(a,b) = a, in
that case. If r > 0, then we claim gcd(a,b) = gcd(a,r).

To see this recall that gcd(a,b) is the smallest positive integer which
can be written as a linear combination of a and b, and gcd(a,r) is the
smallest positive integer that can be written as a linear combination of a
and r. So if we could show that every number which can be written as a
linear combination of a and b, can also be written as a linear combination
of a and r, and vice versa, it would follow that these pairs have the same
ged. Ie. if you were looking for the smallest positive number writeable as
a linear combination, both pairs would give the same result.

But we have an equation b = an+r, which shows that b can be written
as a linear combination of a and r. And if we solve it as r = b-an, we see
that r can be written as a linear combination of a and b. Thus a and b can
each be written as a linear combination of a and r. Using substitution,



then any linear combination of a and b can be written in terms of a and r,
and vice versa. Thus gcd(a,b) = gcd(a,r).

Now we divide a by r, getting a = rm+s where 0 < s < r. This time if s
= 0 then as before r = gcd(a,r) = ged(a,b). If not we replace and r by r
and s, and divide again. Now since the remainders keep getting smaller,
eventually the remainder will be zero. Then the last divisor will be the
gcd of the last pair. But all the gcd’s are equal, so that last divisor is also
the gcd of the original pair.

How to use the Euclidean algorithm to actually solve the
equation in condition #3.

By substituting backwards, from the various steps of the Euclidean
algorithm, we can actually find integers x and y such that gcd(a,b) =
ax+by.

For instance in the example above, computing gcd(1728,371), we found
the equations, 1278 = 3(371) + 165, 371 = 2(165) + 41, 165 = 4(41) +
1. Thus substituting backwards gives, 1 = 165 - 4(41). Now substitute
for 41, getting 41 = 371 - 2(165), so we have 1 = 165 - 4[371 - 2(165)],
and simplify getting 1 = 165 - 4(371) + 8(165) = 9(165) -4(371). Now
substitute for 165, using 165 = 1278 - 3(371), so we get

1 9(165) -4(371) = 9[1278 - 3(371)] - 4(371), and simplifying gives
1 9(1278) -31(371). And this seems to check.

Relatively prime integers.

A version of the divisibility property of primes is actually true for
“relatively prime” pairs of numbers as follows.
Definition: Two integers a,b, not both zero, are called “relatively prime”
if their gcd equals 1.
Theorem: Two integers a,b, not both zero, are relatively prime if and
only if one of the following equivalent properties holds.
1) The only positive integer that divides both of them is 1.
2) No prime number divides both of them.
3) There exist integers x,y (not necessarily positive) such that ax+by = 1.

See if you can prove this. It should be very easy, if you review the
meanings of the words, and the previous results we know. You should
also be able to prove the following divisibility property analogous to that
for prime numbers as an exercise.

Theorem: If a and b are relatively prime integers, and a divides the
product bn, where n is any integer then a divides n.

Proof hint: Try to use the same proof we gave for the prime divisibility
property. QED.



