4000/6000, Day 21 Polynomials
We want to study the ring of polynomials in one "variable" X, i.e. linear combinations of

powers of a variable X of form ag+a1X+....+an X1, and see how it i8 similar to the ring of

ordinary decimal integers, ag+a](10)+....+an(10)1, which are certain linear combinations of

powers of the integer 10. We will review how to add, multiply and divide polynomials, stressing
this analogy with ordinary integers, and show how to define a "size" function that allows us to
imitate the proofs of the most important properties of integers, namely the linear combination
property, (relatively) prime divisibility property, and unique factorization. For reasons discussed
briefly below, we will usually discuss polynomials with coefficients chosen from a field F, or at
least a domain such as Z. .

Later, by imitating the equivalence relations used to define modular integers, we will see
that "modular polynomials" provide a universal model for studying all "root field" extensions of
the rationals Q. The smallest field containing the square root of 2, i.e. elements of form a +

b(sqrt(2)) may be represented by polynomials over Q, if we agree that multiples of X2-2 are
equal to zero. Gaussian integers, i.e. expressions of form a + b (sqrt(-1)) = a+bi, are represented

by polynomials over Z, with X2+1 set equal to zero. The smallest field containing the cube root
of 2, i.e. expressions of form a + b(cuberoot(3)) + ¢ (cuberoot(32)) are just polynomials over Q

subject to the condition that X3-2 and its multiples, are all zero.

As a consequence, we will analyze the "vector space dimension” of these fields, and
eventually deduce as a corollary, that some angles cannot be trisected using only straightedge and
compass, hence there is no such construction that will trisect all angles. Recall that the
Pythagoreans only reluctantly granted the fact that the rationals Q do not equal the reals R,
whereas today we know the reals are an infinite dimensional vector space over Q. The solution
to the trisection problem requires a comparison between intermediate fields of different
dimensions, lying between the rationals and the reals. (The dimension of a constructible field is
always a power of 2, while the solution to some trisection problems lies in a field of dimension
3.) This is probably why the Greeks could not solve this problem.

The ancient problem of "squaring the circle", i.e. of constructing a line segment of length
© (or sqrt(m)), is also known to be impossible, but the proofs known seem much more difficult,
and we will not take time to present one. The difference is that the field Q(n) is infinite
dimensional over Q, which makes it even further from being constructible. (As an example of
how difficult questions involving numbers as abstruse as « can be, I believe it is still unknown
whether the sum (e +n) is actually rational, where e is the familiar base of natural logarithms,
which we showed earlier to be irrational. I.e. while it seems very unlikely the sum is rational,
apparently no one knows how to prove it is not. To put it another way, if you prove this, you will

have one of the most famous PhD theses in mathematics ever produced at the University of
Georgia.)

Polynomials.
Let A be any (commutative) ring, and consider the ring of all polynomials with
coefficients in A. This ring is denoted A[X], and consists of elements of form

agt+a} X+......+an X1, where the coefficients aj are elements of A. Notice that when we write a

polynomial as ag+a] X+......+ap X1, it is understood that all coefficients of powers of X higher
than n are zero, but it is also possible that some or all of the coefficients aj with j <n, for



example ap, may be zero as well. We agree that two polynomials are equal if and only if all their

coefficients are equal. For example 1 + X + 0(X2) = 1+X, since in both cases all coefficients of

powers X1 with n > 2, are zero, as well as the coefficients of X and X0 being equal.

Although explicit computations are easier with integer, modular integer, or rational
coefficients, it is important for theoretical purposes to consider also polynomials with
coefficients in any field, such as R, C, Q(i), Q(sqrt(2)), as well as Q, and Zp where p is a prime
integer, and in a domain such as Z, and sometimes even a more general ring. Polynomials with
coefficients in a ring A, are often called polynomials "over A".

Adding polynomials

Recall how to add integers, by adding numbers in the same columns and then "regrouping". We
add 365 to 879 in the usual way. Le. 9+5 =4 ones and 1 ten. then 1+6+7 = 4 tens and 1
hundred, and finally 1+3+8 = 2 hundreds and 1 thousand.

11
365
879

1244

We could rewrite this as 3(102) + 6(10) + 5

plus 8(102) + 7(10) + 9
equals

11(102) + 13(10) + 14.
Then we have to "regroup”.

Le. 14 =4 +1(10),

giving 11(102) + 14(10) + 4,
and now 14(10) = 1(102)+4,
so we get 12(102) + 4(10) + 4.
Then 12(102) = 1(103) + 2(10),

which gives 1(103) + 2(102) + 4(10) + 4 = 1,244.

Addition of polynomials is similar only easier, since we do not have to regroup.
Le. consider adding the polynomials 3X2 + 6X + 5 and 8X2 + 7X + 9, with the same coefficients



as the integers 365 and 879. The sum is obtained by adding the coefficients of the same powers
of X, as follows.

It is useful to add them in columns as we do with integers.

3X2+6X+5
8X2+7X +9

11X2 + 13X + 14,

And that is all there is to it, no regrouping needed, since no constant, no matter how large, can
ever become a multiple of X, and no constant multiple of X can ever become a multiple of X2.

It is important to replace missing coefficients by zeroes when adding like this, just as we do in
positional notation for integers. Le. just as 307 means 3(102)+0(10)+7, the polynomial 3X2+7

equals 3X2+0X+7. Thus to add 3X2+7 and X3-X + 8, using columns, requires arranging them
as follows, with zeroes in place of the missing coefficients. It also seems helpful to me to write
the 1's explicitly in front of variables with "no" coefficient, which means the coefficient is 1.

0X3 +3X2+0X+7
1X3+0X2-1X +8

1X3 +3X%X2 -1X+15 =
X3 +3X2-X+15.

Notice that we have rewritten the polynomial 3X2+7 which has many unwritten zero coefficients
as

0X3 + 3X2 + 0X + 7, to make it have coefficients in as many places as the polynomial X3-X + 8.
Le. any polynomial ag + a1 X + apX2+.....+an X0 of degree n, can be rewritten as

aQ + a1X + apX2+....+ap X0 + an+1X0H1 +.. +ap XM, where m > n, if we set the coefficients
an+1=..=am=0.

2

The presence of zero coefficients makes it tricky to write a general formula for addition, but we
will try.

Le. to add two polynomials of form
aQ + a1 X + apX2+.... +apnX™ and

bg + b1X + b2X2+.... +by XM, where m > n, set
an+1 = ....= am = 0, and rewrite the first polynomial as

aQ + a1 X + apX2+....+a; XM, Then the sum is
(a0+b0) + (a1+b1)X + (a2+b2)X2+....+(amt+bm)XM,



where apn+1=....=am = 0.

Multiplying polynomials

The same story holds again for multiplication of polynomials, i.e. you multiply as for integers but
there is no need to regroup at the end. To illustrate we multiply 365 by 879 as follows. First
multiply the usual way, mentally carrying.

365
879

3285
2555
2920
320,835

Written out in more detail as powers of 10, we get the following.

3(102) + 6(10) + 5
8(102) + 7(10) + 9

We multiply by one term at a time.

27(102) + 54(10) + 45
21(103) + 42(102) + 35(10)
24(10%) + 48(103) +40(102)

Then add like powers of 10.

24(10%) + 69(103) + 109(102) + 89(10) + 45
Finally we regroup.
=24(10%) + 69(103) +109(102) + 93(10) + 5
=24(10%) + 69(103) +118(102) + 3(10) + 5
=24(10%) + 80(103) + 8(102) +3(10) + 5
=32(10% +0(103) + 8(102)+3(10)+5

=3(103) + 2(10%) + 0(103) + 8(102) +3(10) + 5

=320,835.



Now we multiply the analogous polynomials, with the same coefficients, 3X2+6X+5, by
8X2+7X+9. We line them up in the same way by columns, according to powers of X.

3X2 +6X + 5
8X2 +7X + 9

We multiply again by one term at a time.

27X2 + 54X +45
21X3 +42X2 + 35X
24X4 + 48X3 + 40X2

Then add like powers of X.

24X4 + 69X3 +109 X2 + 89X + 45
That is it, no regrouping needed.

Theoretically we describe multiplication as follows.
The product of f = agt+a] X+......+ap XD, by

g=botb1X+......4bm XM, is the sum of all the terms aiijin = aiiji+j )
Using sigma notation,
( ZaiX’)( 3 ij])= 3 aiijl+J.
0<i<n 0<j<m 0<i<n
0<j<m

The main point to remember is you have to multiply each term in f by every term in g, and then
add all the products together. For example to multiply a cubic by a quartic, you will get 20
products you have to add up.

iy
Finally, since the expression Z a lb X ) will have many terms of the same degree,
0<i<n

0<j<m
we should combine terms of like degree in X, as follows.



> al-ijl+J - X (X ab) xk
0<i<n 0<k<(n+m) i+j=k
0<j<m 1,720

Ifn=m=2, we get (a()+alX+a2X2)(bo+b1X+b2X2)
= apbo + (apb]+a1b0)X + (agb2+a1b]+a2b0)X2

+ (a1b2+a2b1)X3 + (azb2)X4.

For example, we can compute (1+X+X2)(2-X+3X2) as
2+ (-142)X + (3-142)X2 + 3-1)X3 + 3x4

= 2+X+4X2+2X3+3X4.

In the example above, note that there is only one contribution to the term of highest degree, (and
at most one contribution to the term of lowest degree as well). Le.

(ap+a1 X+a2X2)(bo+b1 X+b2X2)

=aQbo
+(apb1+a1bp)X

+ (apb2+a1b1+a2b)X2
+ (a1b+agb1)X3

+ (agbp)X4.

If we multiply a quadratic by a cubic we get a similar pattern,
(ao+a1X+a2X2)(b()+b1X+b2X2+b3X3)

= agbo
+ (apb1+a1bg)X

+ (apb2+ta1b1+a2b)X2
+ (agb3+albp+azb1)X3
+ (a1b3+agbp)x4

+ (a2b3)X5. .

In each case there is only one contribution to the terms of lowest and of highest degree, and



usually more possibilities for terms of intermediate degree. There can however be many terms
with the same number of contributions. For example if we multiply by a constant a(, every term
has only one contribution.

Then we get for instance,
(a0)(bo+b1 X+b2X2+b3X3)
= (apbo)

+Hapb1)X

+(apb2)X2

+apb3)X3.

Multiplication by a linear factor only allows at most two contributions to each term, but they still
form a symmetrical pattern. Le.

(a0+a1 X)(bo+b1 X+bX2+b3X3+bgX4)
= apbo

+ (apb1+a1bg)X

+ (agb2+a1b1)X2

+ (a0b3+a1b2)X3

+ (agbg+a1b3))x4

+ (a1bg)X>.

The number of contributions starts out at 1, with agbg, then goes up by one with each increase in

the degree of the term, until the maximum possible number of n+1 is reached at the term of
degree n. Then it stays there until the term of degree m, after which it starts going back down,
one at a time, until it reaches one again at the top term of degree n+m, with apnbp,.

Degree of a non zero polynomial.
If a polynomial has form f(X) = ag+a] X+......+an X", where ap # 0, we call the term

anX", the “leading term”, and ap, the “leading coefficient”, and n the “degree” of f. Thus the

degree of fis the highest power of X occurring in f with a non zero coefficient.

We do not assign a degree to the zero polynomial, since no term in the zero polynomial
has a non zero coefficient, (although some people like to say the zero polynomial has degree
equal to minus infinity). Thus the degree is a function deg:A[X]-{0}--->N U {0}, where N U
{0} denotes the non negative integers. A polynomial of degree zero is called a "constant".

Behavior of the degree function.

If we multiply f= ag+a] X+.....+ap X%, by g = bo+b X+......+by XM, we get the sum of
all the terms aiijin = aiiji+j. As noted above, different products can give a term of the
same degree. But there is only one way to get a term of highest possible degree. Le. the only
term of highest degree in the product fg = (ag+a] X+......+anX0)(bo+b1 X+...... +bmXM), is the



term anbm XXM = anby XOPM, of degree n+m.
If f has degree n, and g has degree m, i.e. if the coefficients an and by, are non zero, and if
the ring A of coefficients is a domain, then the product anbm, is also non zero. Since this is the

coefficient of the highest power of X occurring in the product, i.e. of X0+m it follows that
whenever the coefficients are chosen from a domain, the degree of the product of two
polynomials is the sum of their degrees. Le.

Lemma: If the ring A of coefficients is a domain, for example a field, then the degree
function obeys the law deg(fg) = deg(f) + deg(g), for all non zero polynomials f,g in A[X].

Remark: This result is not true for rings which are not domains. For example if A = Zg,

then (1+3x)(1+3x) = 146X + 9X2 = 1+6X, where the coefficients are meant to be integers mod 9.
Thus the degree of this product of two polynomials of degree one, has degree one, instead of
degree two. This is one big reason we prefer to use coefficient rings which are domains.

Units in a polynomial ring over a coefficient domain.

If the coefficient ring is a domain, then the degree of a product is the sum of the degrees
of the factors, and since all constants have degree zero, then we cannot get 1 as a product unless
both factors have degree zero. Thus the only possible units have degree zero. Ie. the only
possible units in the polynomial ring are non zero constants.

Thus the units of a polynomial ring A[X] where A is a domain, are exactly the units of the
ring A. In particular, the units in a polynomial ring with coefficients in a field are just the non
zero constants. The units are thus exactly the polynomials of degree zero (since the zero
polynomial has no degree).

If the ring of coefficients is not a domain, determining the units is much harder. For

example, if A = Zg as above, then (1+3X)(1-3X) = 1-9X2 = 1, so both 1-3X, and 1+3X are units
in Z9[X].

This complication in recognizing units is another big reason we prefer coefficient rings which are
domains.

Irreducible polynomials

The analog of a prime integer is called an “irreducible” polynomial. As usual a
polynomial f'in A[X] is irreducible if and only if fis not zero and not a unit and whenever f= gh,
where g,h are polynomials in A[X], then one of g or h must be a unit. Again we see that we
cannot recognize irreducible polynomials unless we can recognize units, another reason to
restrict attention to coefficient rings which are domains. If A is contained in anmother ring B,
then a polynomial f which is irreducible in A[X] may be come reducible in B[X]. We say then
that fis irreducible "over A", but reducible "over B".

Assuming the coefficient ring is a field F, the constants are precisely zero and the units,
so we can describe irreducible polynomials simply as follows. A polynomial f (over a field) is
irreducible if and only if f is non constant and whenever f factors as f = gh, then either gorhis a
constant.

For example, all polynomials of degree one over a field are irreducible, such as X-1, or
6X-7, or (n2)X+e. Whether or not a polynomial of higher degree is irreducible depends on the

field. for example over the real field, the polynomial X2+1 is irreducible, but the same



polynomial is reducible over the complex field, since it factors as (X+i)(X-i). Indeed over the
complex field, the only irreducible polynomials are those of degree one, while over the real field,
all irreducible polynomials have degree 1 or 2.

Over the reals, all polynomials of degree one are irreducible, and a polynomial of degree

2 of form aX2+bX+c, with a # 0, is irreducible if and only if the discriminant b2-4ac is negative.
Over the rational numbers there are irreducible polynomials of every degree. Indeed if pisa

prime integer then for every n > 1, the polynomial X1 - p is irreducible over Q. Itisan
interesting and important fact, proved by Gauss, that a polynomial in Z[X] which is irreducible
over Z, cannot become reducible over Q.

Divisibility theory and factorization of polynomials.

We want to carry out all the same basic results for polynomials that we did for integers, in terms
of studying their divisibility and factorization properties. Fortunately the whole shooting match
goes through in perfect analogy with the results we have been learning for Z and Z[i]. The basic
tool is the size function, in this case the degree, and the first step is to show it satisfies a nice
division theorem. As often seems to happen, this one key proof is the ugliest proof of all, so I
will do this one. But you should be able to state it, by analogy with our other division theorems.
(L.e. you can always divide by any non zero polynomial, and the remainder should have smaller
degree than the divisor.) Actually if you have done a little long division with polynomials, this
proof is just a matter of saying that the procedure you have done will always work, which you
probably already believe anyway.

Review long division of polynomials

The same thing is true for division as for multiplication, i.e. division of polynomials is "easier"
than division of integers, since there are no complications arising from regrouping or "carrying".
For instance suppose we want to divide the integer 274 into the integer 8312. Since 2 goes into 8
four times, we might be tempted to begin the division with a 4, but when we multiply back we
get a number which is too large.

4
284)8312

1136

So we might try a 3, but this is also too large.

_ 3
284)8312

852

Finally we try a 2, and get lucky.

2
284)8312



568
263

then we bring down the 2 as usual, and continue.

2

284 ;8312

568
2632

Now we have to divide 284 into 2632. Since 2 goes into 26, gee 13 times, we could guess that,
but we know the answer is always at most 9, so we guess 9. Then multiplying back gives 2556,
which works. Le.

2

284 ;83 12

568

2632
2556

76
Thus the remainder is 76, so we get the equation 8312 = (2)(284) + 76.

We claim on the other hand, that dividing polynomials takes all the guessing out of what the
answer should be. Let's assume we are dividing by a monic polynomial, such as X2+8X+4, and
dividing into any other polynomial, say 6X4-X2+20X+1.

When we arrange this for division we must remember that the columns of the problem represent
powers of X, and we must put in zeroes to represent missing powers of X. Thus our dividend

6X4-X2+20X+1, must be written as 6X4 + 0X3 - X2 + 20X + 1. So we write the problem as
follows.

X2+8X+4 )5X4+OX3—X2+20X+1

Now this time the difference is that we only need to look at the leading power of X in our two

polynomials. that determines our quotient exactly. Le. since X2 goes into 6X4 exactly 6X2
times, that is the first term of the quotient, no guessing, no trial and error. Le. we have,



6X°
X2+8X+4 )X 4 +0X 3 —-X 2 +20X+1 Then multiply back, change signs, and add (or

subtract if you prefer).
-6X4 - 48X3 - 24x2

-48X3.25%X2

and then bring down the remaining terms

-48X3-25X2420X+1

Now this is our new division problem, and the next term of the quotient is obtained by dividing

X2 into the new leading term, which gives -48X, and we multiply back, and change signs again,
and add.

-48X3-25X2 +20X +1
+48X3+384X2+192X

359X24+212X  +1, do it again
-359X2-2872X-1436

-2660X-1435.

Hence 6X4-X2+20X+1
= (X2+8X+4)(6X2-48X+359) -2660X-1435.

This actually checks. Written out in columns:

6 X% —48X+359
X2+8X+4 )X4+OX3—X2+20X+1

-6X4 -48X3-24X2

-48X3 -25X2 +20X +1
+48X3+384X2+192X

359X24+212X +1
-359X2.2872X-1436




-2660X-1435.

Although the dividing part is easier than dividing integers, obviously we have to multiply and
subtract a lot of integers to carry this out.



Let's try an easier one, like one in the book. Let's divide X3-8 by X2-X-2, writing the answer on
the right.

X2-X-2 )’3+ OX2+ 0X- 8; x+1

X3+X2 +2X

X2 +2X -8
X2+ X +2

3X-6
Thus X3-8 = (X+1)(X2-X-2) + (3X-6).

We can prove by the first step of this division process, and the well ordering principle, that
division by a monic polynomial is always possible, although it seems obvious this process must
work. Le. as long as your divisor has degree no bigger than the polynomial you get from
subtracting, you can continue to divide and lower the degree every time. Thus eventually the
degree of the remainder becomes lower than that of the divisor, (or the remainder becomes zero).

Here is the proof.

Division theorem for polynomials over a field: Given two polynomials £h, over a field, where
f# 0, there exist polynomials, g, r, such that

1) h = fg+r, and

2) either r = 0, or deg(r) < deg(f).

Proof: Since we can always divide through by a non zero constant, we may as well assume that
the leading coefficient of fis 1, to simplify the notation in the proof. Ok,

f= Xn+an_1Xn'1+....+a1X+a(), and

h = by XM+by.1 XM-1+, +b1X+b(, and we want to find a polynomial g such that h -fg = r has
lower degree than f. We just choose our g so that fg has the same leading coefficient as h, and
then when we subtract fg from h we get something of lower degree. We keep doing this until the
degree is lower than deg(f). Maybe we can do this by induction (or well ordering). ILe. suppose
deg(h) < deg(f). That is the really easy case. Then just take g=0andr=h. Le. thenh=0(f) +
h, and h has lower degree than f. done.

Now assume deg(h) > deg(f), and assume there is some h for which this is impossible.
Then there is such an h of lowest possible degree, so take that one. Le. assume that deg(h) >
deg(f) and that the theorem is true for all polynomials of degree lower than h. Now we just want
to multiply f up until it has the same leading term as this h, and then subtract it off. So consider

the monomial by X™-1, If we multiply this by f we get
(meTn-n)f = (mem-n)(Xn+an- 1 Xn- 1 +....taj X+a()) =

bmXM+ (mem'n)(an_an'l+....+a1X+a0) = bm XM+ k(X), where k is a polynomial of degree



less than deg(h), i.e. less than m. Note also that this polynomial (b XM M)f = by, XM+ k(X),
has the same leading term as h does. Thus when we subtract, we get
h - (b XM-N)f =

bmXM+by-1XM- 1+ +b1X+bg - (b XM+ k(X)) =
bm-1XM-1+_ +b1X+bg - k(X) = s(X),

is some polynomial of degree <m-1. Thus we can divide finto s. lLe. there exist polynomials t,r
such that

s(X) = ft + r and deg(r) < deg(f). But then
h - (b XM-M)f = (X)),

s0 h = (bpXMN)f + g(X) =
(b XM-Mf + ft +r=
f(bmX™M-N + t) + r, where deg(r) is still less than deg(f). QED.

Remark: A polynomial whose leading coefficient is 1, is called "monic". Note that the only
place in this proof where we assumed we were working over a field was when we divided
through by the leading coefficient of f to get a monic polynomial to divide by. Thus in fact the
division theorem is true when dividing by monic polynomials over any ring at all. Le.

Corollary (of proof): Division theorem for monic polynomials over a ring: Given two
polynomials fh, over a ring, where f # 0 is monic, there exist polynomials, g, r, such that
1) h = fg+r, and

2) either r = 0, or deg(r) < deg(f).

Definition: A "root" of a polynomial f(X) is an element r of some ring containing the coefficient
ring of f, such that f(r) = 0.

Corollary (Root - factor theorem): If f(X) is a polynomial over a ring A, and r is an element of -
A, then r is a root of f(X), i.e. f(r) = 0, if and only if X-r is a factor of f{(X).

proof: If X-r divides f(X), then there exists a g(X) such that f(X) = (X-r)g(X). Then setting X=r
shows that f(r) = (r-r)g(r) = 0. Conversely, by the monic division theorem, given f(X) and r, there
exists a polynomial g(X) in A[X] and a constant ¢ in A, such that f{X) = g(X)(X-r) + c.
Substituting X = r on both sides we see that f(r) = c. Hence X-r divides f{X) if f(r)=c=0.

QED.

(Remark: By repeating this process in the same way, we can write f(X) = (hW(X)(X-r)+d)(X-r) + ¢

= h(X)(X-r)2 + d(X-1) + ¢, where d is the "derivative of fat r". This allows us to define the
derivative of any polynomial, without limits.)



Corollary: If f(X) is a non constant polynomial of degree 2 or 3 over a field F, then fis
reducible over F if and only if f has a root in F.

Proof: If r is a root of fin F then f(X) = (X-r)g(X) where deg(g) = 1 or 2, by the previous
corollary. In the other direction, if f is reducible, then f(X) = g(X)h(X) where both g and h have
positive degree and deg(g)+deg)h) < 3. Hence at least one factor has degree 1. If say deg(g) =1,
then g(X) = aX+b for some a#0, b in F. Then r = -b/a is a root of g, hence also a root of fin F.
QED.

Take home problems:
Assuming these results, prove the following:
(Assume all polynomials have coefficients in a field.)

Due Wednesday:

1) Given f,g, not both zero, if d = fh+gk is a # 0 linear combination of lowest possible degree,
then d divides both fand g.

2) If f,g are relatively prime polynomials, i.e. if their only common divisors are non zero
constants, then there exist polynomials h.k, such that th+gk = 1.

3) If f,g are relatively prime polynomials and f divides gh, then f divides h.
4) If fis irreducible, and f divides gh, then f divides g or f divides h.

Due Friday.

5) If fis any # 0, non unit polynomial, then f can be written as a product of (one or more)
irreducible polynomials.

6) Iff1,.....fa, g1,.....&m are irreducible polynomials, and if their products are equal, i.e. if
(f1)(.....)fn) = (g1)(....)(gm), then n = m, and after possibly renumbering, we have f1 =c1g1, 2
=¢2g2, .... , fn = cngn, where each cj is a non zero constant.

Greatest common divisors.

Given two elements a,b of a ring A, we call another element d, a ged of a,b provided two
properties hold:

1) d divides a and b, and

2) any common divisor of a and b divides d.

Problem 1 above allows us as usual to prove the existence of a gcd for two polynomials f,g, not
both zero, over a field.

Le. Given f,g, not both zero, if d = fh+gk is a # 0 linear combination of lowest possible degree,
then d divides both fand g. We claim any such d is a ged of f,g. We must check the two
properties above. First, d divides fand g by problem 1. Then by the three term principle, since d
is a linear combination of f and g, any common divisor of f and g also divides d. In a general



ring, it might be better to call these ged's rather "universal common divisors" than greatest
common divisors, although in the case of polynomials, any common divisor of f,g of largest
degree, is a ged.

These ged's are not unique, since any non zero constant multiple of one ged is another one.
However we can divide any ged through by its leading coefficient and get a unique monic ged.
In more general rings, like the Gaussian integers, there is no way to choose a special ged, and
then any two elements a,b have as many ged's as there are units in the ring.

Recall the Euclidean algorithm for calculating a ged, from the division algorithm. Let's use it to

calculate the ged of X3-8 and X2-X-2 in Q(X). Recall we begin by dividing the smaller into the
larger, and finding the remainder.

Above we found that X3-8 = (X+1)(X2-X-2) + (3X-6). Then we divide the remainder into the
old divisor. Since we are in a field, we divide 3X-6 by 3 to get a monic polynomial X-2. We can
change this back later.

X-2 }2—X— 2 X+1

-X2+42X

X-2
X-2

Thus X2-X-2 = (X-2)(X+1), so dividing by the original polynomial 3(X-2) gives us X2-X-2 =
[3(X-2)][(1/3)(X+1)]. Notice that although the quotient changes, the remainder stays the same.

Now since this last remainder is zero, the previous remainder is our ged, i.e. gcd(X3-8, X2-X-2)
=3X-6.

We can work backwards to actually write this gcd in terms of the original two polynomials.
Since there was only one division step, this is trivial.

Le. X3-8 = (X+1)(X2-X-2) + (3X-6), s0 X3-8 - (X+1)(X2-X-2) = (3X-6), expresses (3X-6) as

a linear combination of (X3-8) and (X2-X-2). If we want the unique monic ged, i.e. X-2, we
divide through by 3, getting

(1/3)(X3-8) - (13)(X+1)(X2-X-2) = (X-2).

Exercise: Over Q, since X2+1 is irreducible, and does not divide X3+2X+1, their gcd should be
1. Find an expression of form f(X)(X2+1) +g(X)(X3+2X+1) = 1, with f,g in Q(X).



4000/6000 Modular polynomial rings

We have shown many parallels between the ring of integers and the ring of polynomials over a
field. there is one construction we have made for integers that we have not yet made for
polynomials, the parallel of the modular integers. Le. recall that given any integer n we defined
an equivalence relation on Z such that two integers r,s were equivalent mod n, if and only if n
divides r-s, i.e. if and only if r = s+ nk for some integer k.

Then we checked that this relation was indeed an equivalence relation, and that it respected the
arithmetic operations, i.e. sums of equivalent integers were equivalent, as were products. In our
present situation if F is any field and F[X] the polynomial ring over F, if h is any non constant
polynomial in F[X], define an equivalence relation on F[X] where f,g are equivalent mod h, if
and only if f-g is divisible by h, i.e. if and only if f= g + kh for some polynomial k.

Then, as with modular integers, when we add and multiply equivalent polynomials and get
equivalent answers. le.

Claim: If g, g1 are equivalent mod f, and if also h , h] are equivalent mod f, then gh is
equivalent to g1h1, and g+h is equivalent to g + hj.

proof: This is easy, but we must be careful, as always. We are assuming that g=g| +fr,and h
=h] +fs, for some polynomials r,s. Then just add them and get g+h = gl Hir+h) +fs= (g1 +
hy) +fr +fs =

(g1 + hy) +f(r +s). Thus g+h is equivalent to g1 + hj.

Also if we multiply we get gh = (g1 +fr)( h] +fs) = g1hy +gifs +fr h1 +frfs
= g1h1 +f(g1s +r hq +rfs), hence gh is equivalent to gjh1. QED

This says the set of all equivalence classes of elements of F[X] forms a ring, which we write as
F[X]J/(f). Le. to define the sum or product of two equivalence classes, just pick one
representative of each class, add or multiply those, and then take the equivalence class of the
answer. The claim says all choices will give the same equivalence class as an answer. Le. if we
write [g] for the equivalence class of g, then we define [g]+[h] to be [g+h]. And this works
because the claim shows that if [g] = [g1], and [h] = [h1], then also [gth] =[g1+h1]. These
equivalence classes are like polynomials, except all multiples of h are set equal to zero.

Lemma: Ifh is irreducible, then the ring F[X]/(h) is a field containing a copy of the constant
field F.

proof: Recall Karl's’ proof that Zyp is a field if p is a prime integer. Imitate it. Le. ifhis
irreducible and f is not divisible by h, then there are polynomials gk such that fg + hk = 1. then

when we set h = 0, we get
fg=1modh, i.e. [f][g] =[1], mod h. So [g] is the inverse of [f], mod h.

To show this new ring contains F, check that no two elements of F become equal, mod h. Le. if
c,d are constants in F, and [c] = [d], then h must divide c-d, but h has positive degree and c¢,d
have degree zero. So for every ¢ # d in F, their equivalence classes [c], [d] are different in
F[X}/(h). Thus the field F is injected into the field F[X]/(h). QED.



Recall also that in Z/(n), (another notation for Zy), all equivalence classes were represented by

integers in the set {0,1,2......,n-1}, since you could always divide a larger integer by n and throw
away a multiple of n, leaving just the remainder, which is smaller than n. In the same way we
can divide any polynomial by h(X) and throw away a multiple of h, leaving only the
remainder,which has lower degree than h. More precisely.

Lemma: For any polynomial h, irreducible or not, every equivalence class in the ring
F[X]/(h(X)) is represented (by zero or) a polynomial of degree less than deg(h).

Proof: Given any polynomial f{(X) we can write f(X) = q(X)h(X) + r(X), where r=0 or deg(r) <
deg(h), and r is equivalent to f (mod h). QED.

Thus if deg(h) = n, every element of the ring F[X]/(h(X)) is equivalent to a polynomial of form
aQ+a]X+....+an-1 X101, where the a’s are in F.

For example, in Q[X]/(X2-2), the elements are all equivalent to ones of form a+bX, with a,b,
rational numbers.

Similarly, the elements of Q[X]/(X2-3) are all equivalent to ones of form a+bX where a,b, are
rational numbers.

Note however, although these last two rings look the same from the standpoint of addition, they
are very different in terms of multiplication, since in the first we set X2 = 2, and in the second we
set X2 =3,

Similarly, Q[X]/(X2+1) is also made up of elements of form a+bX, with a,b, rational, but here
we set X2 = -1, when we multiply.

Thus the first field is essentially the same as Q(sqrt(2)), the second as Q(sqrt(3)), and the third as
Q(i), where i2 = -1.

These similarities allow us to calculate multiplicative inverses in all these fields, and in more
general ones too.

Example: Let F = Q, the rationals.
Let’s try the field Q[X]/(X2+1). Le. we claim the inverse of a+b[X] here should be (a-
b[X])/(a2+b2).

Le. look for polynomials f,g such that f(X)(X2+1) + g(X)(atbX) =1. Try it first with just a+X.

Divide X+a sz +0X+1; X-a

-X2_aX




-aX +1
+aX + a2

1+a2

So we get X2+1 = (X+a)(X-a) + 1+a2,
so 1+a2 = (X2+1) - (X+a)(X-a),
so 1 = (X2+1)/(1+a2) - (X+a)(X-a)/(1+a2) .

So when we set (X2+1) =0, we get | = (a+X) [(a-X)/(1+a2)].

Now to invert a+bX. we have the inverse of (a/b + X) as
[(a/b - X) /(1+(2/b)2)] = [(ab-bZX)/(a2+b2)].

Le. [(a/b) + X][(ab-b2X)/(a2+b2)] = 1,

so also, shifting one b to the left factor, gives

[(@) +bX][(a-bX)/(a2+b2)] =1,

so the inverse of a+b[X], mod X2+1, is (a-b[X])/(a2+b2).

Does this look familiar from working with complex numbers? That is because this field
QIX]/(X2+1) is essentially the same as the field Q(i).

Example 2: Compute an inverse in Q[X]/(X2-2).

Let h(X)=X2-2, and F = Q, the rational numbers, and compute the inverse of a+[X], where a is
in Q.

solution: We want to solve the equation (X2-2)g(X) + (a+X)(k(X)) = 1, for some polynomials
gk. Then k will be the inverse of a+X, mod(X2-2). We use the Euclidean algorithm again.

Le. divide X22 by X+a, getting.

X+a 5X2+0X—2; X -a

-X2-aX

-aX-2



+aX+a2

a2-2  So the remainder is a2-2 a unit.

Le. we have X2 -2 =(X-a)(X+a) + (a2-2). Hence
a2 -2 = X2.2 - (X-a)(X+a),

so 1 = (X2-2)/(a2) - (X-a)(X+a)/(a2-2)
= (X2 -2)/(a2) + (X+a)[(a-X)/(a2-2)].

Now setting X2-2 =0, gives (a-X)/(a2-2) as the inverse of a+X, mod X2-2.

If we want the inverse of a+bX, we divide by b, find the inverse of a/b + X as [(a/b) - X]/ [(a2/b2)
- 2] = [ab-b2X]/[a2-2b2], s0 that

[(a/b) + X ] [ab-b2X]/[a2-2b2] = 1, hence multiplying and dividing by b on the left, gives
[a+bX ] [a-bX]/[a2-2b2] = 1.

This should look familiar, from our experience with the field Q(sqrt(2)) where the inverse of
a+bsqrt(2) was (a-bsqrt(2))/(a2-2b2).

Claim: In fact these new modular rings are not new rings at all, but merely abstract version of

the subfields Q(i) and Q(sqrt(2)) of R, generated by roots of the irreducible polynomials X2+1,
and X2 - 2.

Example 3: In the same way we claim that the modular polynomial ring Q[X]/(X3 -2)is
"isomorphic to" the field Q(%@ )- This lets us figure out how to find inverses in that field by

using the Euclidean algorithm.

Le. every element of the field Q[X]/(X3-2) is represented by a polynomial f of degree <2. If
f(X) is any non zero polynomial of degree < 2, then fis relatively prime to (X3-2), so there is an
equation of form

f(X)g(X) + h(X)(X3-2) = 1.

Setting X = 42 in this equation gives

f(3‘5). g(%/f) =1, so0 g(%/i) is the inverse off(%/i).

Use this method to find the inverse of 42 , and of 1@.



Since ¥4 = (3\/5 )2, the field Q( 2 ) consists of elements of form
a+bi2 +cifa , Where a,b,c, are rational numbers.

To invert 2 , We want to invert the element represented by the polynomial X, so divide X into
X3-2, as follows:

X )X3+OX2+OX—2 . X2
-x3

-2
so we get X3-2= X(Xz) -2. Thus2 = X(X2) - (X3-2), So setting X = V2 ,

gives 2 =X(X2),s0 1= X[(X2)/2]. Thus the inverse of X, mod X3-2, is X2/2. Le. the inverse
of ¥2,is (¥4)/2.

To invert 1+3/2 , do the same procedure for 1+X. Le. divide 1+X into X3-2.

X+1)X3 +0X +0X-2 ; X2-X+1
X3 .x2

X2 )
+X2 +X

X-2
-X -1

-3

Thus X3-2 = (X+1)(X2-X+1) -3, 50 3 = (X+1)(X2-X+1) - (X3-2). Now set
X=3%2,and get 3=1+¥2) ¥4 -2 + 1). So the inverse of 1+¥2 , is

(¥4 - ¥2 +1)3. Let’s check it.
Le. multiply back: (1+32) ¥4 -2 +1)=@4 -¥2 + 1)+ 2-¥4 +32 )

=3. Hence 1/3 of that is indeed 1.

Now you try it for 1. Recall ¥4 = (%E )2 so 1 corresponds to 1+X2 mod X3-2.



Thus we divide X2+1 into X3-2, getting X3-2 = X(X2+1) -(X+2). Then
X+2 = X(X2+1) -(X3-2), so now we divide X+2 into X2+1, and get
X241 = (X+2)(X-2) +5, 50 5 = X241 - (X+2)(X-2)

= X2+1 - (X+2)(X-2) = (X2+1) - (X(X2+1) «(X3-2) }(X-2)

= (X2+1)[1-X(X-2)] +(X-2)(X3-2) = (X2+1)[1+2X-X2] + (X-2)(X3-2).

Now set X = 32 , and gets = (1)[l+23\5 ], Check it.
2wz Jah - @+ 4238y + 1+ 202 W - 5

So (¥4]r1y-1 = [1+233 [¥dlys.




Here is an explanation of why this trick works.

Theorem: The modular polynomial ring Q[X]/(X2-2), is "isomorphic to" the field Q(sqrt(2)),
i.e. there is a correspondence between their elements which is 1 to 1 and onto, and which
preserves the ring operations of addition and multiplication.

Proof: Recall the elements of the ring Q[X]/(X2-2) are equivalence classes of polynomials in
Q[X], where two polynomials are equivalent if and only if their difference is divisible by (X2-2).
We claim this is the same equivalence relation induced by evaluating the polynomials at X =

sqrt(2). Le. intuitively, setting (X2-2) = 0, is the same as setting X2 =2, i.e. as aetting X equal to
a square root of 2.

So define a map Q[X]-->Q(sqrt(2)), which sends f(X) to f(sqrt(2)). Le. just set X equal to sqrt(2)
in f(X). Since evaluating the sum f+g is th4 same as evaluating f and g separately and then
adding the values, and the same holds true for multiplying, this map preserves addition and
multiplication. Le. setting X = sqrt(2) in f(X) and also in g(X), and then multiplying the values,
gives the same answer as first multiplying out the polynomials f and g, and then setting X equal
to sqrt(2).

We claim that f(sqrt(2)) = g(sqrt(2)) if and only if f-g is divisible by X2-2. Certainly if f-g = (X2-
2)h(X), then f(X) = g(X) + (X2-2)h(X), so setting X=sqrt(2) on both sides gives f(sqrt(2)) =
g(sqrt(2)) + 0.

In the other direction suppose f(sqrt(2)) = g(sqrt(2)). Then we claim that f-g is divisible by X2-2.
By the division algorithm we can try to divide it, and we get an equation of form f(X)-g(X) =
(X2-2)h(X) + 1(X), where 1(X) has degree < 2. But then setting X = sqrt(2) on both sides gives

0 =r(sqrt(2). But there is not polynomial of degree < 1 with rational coefficients satisfied by
sqrt(2) except the zero polynomial, so r=0. Le. f-g is divisible by X2-2, as claimed. QED.

4000/6000 Day 23 Modular polynomial rings part 2

If F is any field and F[X] the polynomial ring over F, if f is any non constant polynomial in F[X],
define an equivalence relation on F[X] where g,h are equivalent mod f, if and only if g-h is
divisible by f, i.e. if and only if g = h + kf for some polynomial k.

Then, as with modular integers, when we add and multiply equivalent polynomials and get
equivalent answers. Le.

Claim: If g, g1 are equivalent mod f, and if also h, h] are equivalent mod f, then gh is
equivalent to g1hj, and g+h is equivalent to g1 + hj.

proof: This is easy, but I must be careful, as always. We are assuming that g = g1 +fr, and h=
hy +fs, for some polynomials r,s. Then just add them and get g+h = g1 +fr + h] +fs = (g1 + h1)
+r +fs =

(g1 + h1) +f(r +s). Thus g+h is equivalent to g1 + hj.



Also if we multiply we get gh = (g1 +fr)( h] +fs) = g1h1 +g1fs +fr hy +fifs
= g1h1 +f(g1s +r hq +rfs), hence gh is equivalent to g1h1. QED

This says the set of all equivalence classes of elements of F[X] forms a ring, which we write as
F[X]/(f). Le. to define the sum or product of two equivalence classes, just pick one
representative of each class, add or multiply those, and then take the equivalence class of the
answer. The claim says all choices will give the same equivalence class as an answer. Le. if we
write [g] for the equivalence class of g, then we define [g]+[h] to be [g+h]. And this works
because the claim shows that if [g] = [g1], and [h] = [h1], then also [g+h] = [g1+h1].

Lemma: If fis irreducible, then the ring F[X]/(f) is a field containing a copy of the constant
field F.

proof: (We proved this in the previous notes.)

Since f was an irreducible polynomial, if it had degree > 2 then by the root factor theorem it had
no root in F. Hence he most important property of the new field F[X]/(f) is the next one.

Theorem: The polynomial f(X) has a root in the new field F[X]/(f).

proof: It is confusing to have so many X's running around, so it is better if we pick a new letter,
like T, and reconstruct the field as F[T]/(f(T)). Since I cannot make a bar over a T, denote the
class of T by t. Then f(t) = the class of f(T) = the class of 0. So t = class of T, is a root of f{X) in
the field F[T]/(f(T)). QED.

In the language of the book, "Xbar" is a root of fin the field F[X]/(f). Le. f("Xbar") = class of f=
"Obar. "

Example: Let F = Q, the rationals.

Let’s try the field Q[X]/(X2+1). Le. we claim the inverse of a+b[X] here should be (a-
b[X])/(a2+b2).

Le. look for polynomials f,g such that f(X)(X2+1) + g(X)(atbX) = 1. Try it first with just a+X.

Divide X+a ixz +0X+1; X-a

X2 . aX

-aX +1
+aX + a2

1+a2

So we get X2+1 = (X+a)(X-a) + 1+a2,



so 1+a2 = (X2+1) - (X+a)(X-a),
s0 1= (X2+1)/(1+a2) - (X+a)(X-a)/(1+a2) .

So when we set (X2+1) = 0, we get 1 = (a+X) [(a-X)/(1+a2)].

Now to invert a+bX. we have the inverse of (a/b + X) as

[(a/b - X) /(1+(a/b)2)] = [(ab-b2X)/(a2+b2)].

Le. [(a/b) + X][(ab-b2X)/(a2+b2)] =1,

so also, shifting one b to the left factor, gives

[(a) +bX][(a-bX)/(a2+b2)] =1,

so the inverse of a+b[X], mod X2+1,is (a-b[X])/(a2+b2).

Does this look familiar from working with complex numbers? We claim this field Q[X]/(X2+1)

is essentially the same as the field Q(i).

Example 2: Compute an inverse in Q[X]/(X2-2).

Let h(X) = X2-2, and F = Q, the rational numbers, and compute the inverse of a+[X], where a is
n Q.

solution: We want to solve the equation (X2-2)g(X) + (aX+b)(k(X)) = 1, for some polynomials
g.k. We use the Euclidean algorithm.

Le. divide X22 by X+a, getting.
X+a )X +0X-2; X-a
-X2.aX

-aX-2
+aX-+a2

a2-2  So the remainder is a2-2 a unit.

Le. we have X2-2 =(X-a)(X+a) + (a2-2). Hence
a2 -2 = X2-2 - (X-a)(X+a),



s0 1 =(X2-2)/(a2) - (X-a)(X+a)/(a2-2). Now setting X2-2 = 0 gives that (a-X)/(a2-2) is the
inverse of a+X, mod X2-2.

If we want the inverse of a+bX, we divide by b, find the inverse of a/b + X as [(a/b) - X]/ [(a2/b2)
-2]= [ab-bzX]/ [a2-2b2], so that

[(a/b) + X ] [ab-b2X]/[a2-2b2] = 1, hence multiplying and dividing by b on the left, gives

[a+bX ] [a-bX]/[a2-2b2] = 1.

This should look familiar, from our experience with the field Q(sqrt(2)) where the inverse of
a+bsqrt(2) was (a-bsqrt(2))/(a2-2b2).



Day 23: 4000/6000 Reducibility of polynomials over the rational field (Corrected version)

The ring Q[X] has “unique” factorization of non constant polynomials into irreducible ones (i.e.
unique up to constant multiples, and reordering of factors), but it is hard even to recognize an
irreducible polynomial in Q[X]. We need some results to help us do this. Here are five basic
ones, that still do not go very far.

There is a close connection between the concepts of irreducibility in Z[X] and irreducibility in
Q[X]. They are not quite the same since prime integers in Z are irreducible factors in Z[X] and
units in Q[X], which means that some reducible “polynomials” in Z[X], like 2X, or 6, become
irreducible or even units in Q[X], but other than worrying about integer factors, there is little
difference. The main result (due to Gauss) is that in the other direction things are ok, i.e.
irreducible polynomials in Z[X] remain irreducible in Q[X].

NOTE: In general, a polynomial in Z[X] which is irreducible in Q[X] and whose coefficients
have no common prime factor in Z, is irreducible also in Z[X]. (This is elementary to prove.)

D) If f(X) in Q[X] has degree 2 or 3, then fis reducible in Q[X] if and only if f has a root in Q,
(and we know how to find all possible rational roots).

I)(Gauss) If f(X) cannot be factored into factors of degree > 1 in Z[X], then it cannot be
factored into factors of degree > 1 in Q[X], i.e. fis irreducible in Q[X]. Thus a polynomial fin
Z[X] of degree > 1 is irreducible in Q[X] if and only if f cannot be factored in Z[X] into two
factors both of degree > 1.

III) If f has degree n > 1 in Z[X], and there is some prime p in Z such that the element {f}
represented by f in the ring Zp[X] still has degree n, and {f} is irreducible in Zp[X], then fis also

irreducible in Q[X]. If the coefficients of f have no common prime factor in Z, then fis even
irreducible in Z[X].

IV)(Eisenstein). If fis of degree n> 1in Z[X], if f=ag + a1 X + apX2 + .....+ap XD, and if there
is some prime p in Z such that p divides the coefficients aq, a, ...., an-1 of f, but p does not
divide ap, and p2 does not divide ag, then f'is irreducible in Q[X].

V. If fhas degree 4 or 5 in Z[X], and the element {f} it represents in Z2[X] has the same degree,
has no root in Z2, and is not divisible by X2+X+1, then f is irreducible in Q[X]. (Similarly, if f
has degree 4 or 5 in Z[X], and the element {f} it represents in Z3[X] has the same degree, no root
in Z3, and is not divisible by any of X2+1, X2+X+2, or X242X+2, then f is irreducible in Q[X].

We have proved 1. already.

proof of II: Let f(X) = g(X)h(X) where g,h, are of degree > 1 in Q[X]. Then taking common
denominators of the coefficients, there is some n in Z and m in Z such that ng = g1 has integer

coefficients and also mh = hj has integer coefficients. Then we have nmf= g1hi, as an equation
in Z[X]. We claim we can cancel the factors n,m on both sides, without introducing fractions,



and hence leaving a factorization of f by integer polynomials. Let p be any prime factor of nm.
Then p divides the left side so it also divides the right side, i.e. p divides the product gih1 in the

ring Z[X]. Now we know nothing about this ring but in fact we claim it has a sort of prime
divisibility property, at least for prime integers, and in particular

Claim: Since p divides the product g1h1 in Z[X], then either p divides g} or p divides hj.
(Notice that for p to divide a polynomial means that it divides every coefficient).

We will use the trick of “mapping” a polynomial g in the ring Z[X] to a corresponding
polynomial {g} in the ring Zp[X]. We do this simply by replacing each integer coefficient a of g
by the element {a} in Zp which it represents. This mapping from Z[X] to Zp[X] preserves all the
operations on polynomials. Le. sums and products in Z[X] correspond to sums and products in
Zp[X]. Le. if g,h are elements of Z[X], then the element {gh} represented by their product gh in
Z[X] equals the product {g} {h} in Zp[X]. We take this fact for granted without proof (as does

the book). We have learned this behavior can be risky, but I assure you that in this case it is
absolutely all right.

To prove the Claim, consider the polynomials {g1}, {h}, and {g1h]} represented by g1, h1, and
g1hi, in the ring Zp[X]. Our hypothesis says that the p divides g1hi, so the element {g1h1} is
zero in Zp[X]. Since Zp is a field, the polynomial ring Zp[X] is a domain, so since by my
assurances to you we also have {g1}{h1} = {g1}{h1}, either {g1} or {h1} must be zero in
Zp[X]. To be zero measn all coefficients are zero in Zp. So p divides all coefficients of either g]
or hy, as claimed. QED for Claim.

Now in the equation nmf = gihi, if we factor mn into prime integers, we have something like
(rDP2)(........ )Prf=g1hi. And we have just proved that p1 divides all coefficients of say gi.
Then we can cancel p1 on both sides getting say (p2)(........ )(pr)f = goh1, where all polynomials
f,g2,h1, still have integer coefficients. Then the same proof says we can do the same with p2,
then with p3,......, and eventually with py. After these cancellations we have an equation like f =
gsht where g, h have the same degrees as g,h, but have integer coefficients. Thus from a
factorization of the integer polynomial f into factors of degree > 1 with rational coefficients, we

have constructed a factorization of finto factors of the same degrees, but with integer
coefficients. QED.

proof of III: We will show if f has degree > 1 in Z[X] and is reducible in Q[X], and if {f} in
Zp[X] has the same degree as f, then {f} is also reducible in Zp[X]. Le. if fis reducible in Q[X],
then by part II we may assume that f = gh, where g,h are non constant in Z[X], and then we have
also {f} = {g} {h} in Zp[X]. To show {f} reducible in Zp[X] we only have to show that {g} and
{h} are non constant.

This is not obvious since we could have say g = 3X + 1, so when we reduce mod 3, this
becomes the constant {1}. But here we use our hypothesis on the degree. Since Z is a domain
we have deg(f) = deg(g) + deg(h), and since p is prime, hence Zp is also a domain, we have
deg{f} =deg{g} + deg{h}. Since also deg({g}) < deg(g), and deg({h}) < deg(h), and by
hypothesis we have deg({f}) = deg(f), then also we must have deg({g}) = deg(g), and deg({h}) =
deg(h). Thus {g} and {h} are also non constant, so {f} is reducible. The contrapositive of this



implies that if {f }has the same degree as f, and if {f} is irreducible in Zp[X], then fis also
irreducible in Q[X].

Under the hypotheses of III, since f is irreducible in Q[X], then by II, f cannot be factored
into factors of degree > 1 in Z[X], hence the only way f can be reducible in Z[X] is if f has a non
unit factor of degree 0, i.e. a non unit integer factor, i.e. an integer other than 1 or -1, which is a
factor of every coefficient. Thus if in addition to the hypotheses of III, the coefficients of f have
ged 1, then fis actually irreducible in Z[X]. QED.

proof of IV: Let f=ag+a1X +apX2 + ... +ap X0 have degree n in Z[X], and assume that f'is
reducible in Q[X]. Then by II, f= gh, where g=bg + b1 X + b2X2 + ... tbe X, and h=¢cg + ¢1X
+cX2 + ... +cgXS, are polynomials in Z[X]of degrees r,s > 1, where r+s = n. Then since by
hypothesis p divides ag = bgcg, but p2 does not , then p divides one of by or ¢ but not both. Say
p divides bg but not cg.

Since by hypothesis p does not divide ap = brcs, then p does not divide either of by or c.
Thus p divides b and maybe some more b’s but not all of them. Pick the one of smallest index
that it fails to divide. I.e. say p divides bg,b1,....,bt-1, but p does not divide b, where 0 <t <r <n
=r+S.

Then look at the coefficient at of f. This coefficient is
at =btcQ tbt-1¢1 +bt-2c2 + ........ +boct. This is true even if some of these ¢’s are zero, e.g. if
deg(h) <t. Since p divides all coefficients of f below the one of degree n, and sincen >r>t,
then p divides a;. But this is a problem, since p also divides all the b’s below by, but not bt and

not c¢(. So p does not in fact divide at by the generalized 3 term principle, a contradiction. Thus
f is not reducible in Q[X]. QED.

Proof of V, for Z2. By IIl it suffices to check that {f} is irreducible in Z3[X]. If not {f} has an
irreducible factor of either degree 1 or 2. If it has a factor of degree 1 it would have a root, and
the only irreducible quadratic polynomial over Zp is X2+X+1 (exercise 6, p.111). Similarly the
only irreducible polynomials, according to the book’s list, are the ones given. (Exercise.)

Example: If p is any prime integer, and n > 0, then X™ - p is irreducible in Z[X], and also in

Q[X].

Example: X3 +79X + 99 becomes X3+X+1 mod 2, where it has the same degree < 3, but no

roots, hence is irreducible in Z3[X]. Thus X3 +79X + 99 is irreducible in Q[X], and since it is
monic, it is also irreducible in Z[X].

Look at problems in section 3.3 on determining reducibility over Q of polynomials. (They are
not all so easy.)

a. X3+4X2-3X+5,
b. 4X4-6X2+6X -12,
c. X3 +X24X +1,



d. X4 - 180,

e. X4+ X2 -6,

f.X42X3 +x2 + 1,

g. X3 +17X +36,

h X4+X +1,

L X +X3+X2+1,

j X9 +X3 +X +1.

Second proof of Claim needed for Gauss Lemma.

In the proof above of the Claim, used in the proof of Gauss's result, part II, of the class notes, we

gave the proof from the book, which used the concept of reducing a polynomial with integer
coefficients to one with modular integer coefficients.

This proof uses an abstract idea, modular integers, but has the advantage of replacing multiples
of p by zeroes, thus rendering the argument easier. Le. it is easier to understand an expression
when there are a lot of zeroes in it.

Here is a more elementary proof, more complicated, but with no abstract stuff, and nothing to
take on faith. It may seem easier for that reason. (I will not use the same letters as above.)

Claim: Assume f,g,h, are in Z[X], f = gh, and p is a prime integer that divides every

coefficient of f. Then either p divides every coefficient of g, or p divides every coefficient of
h.

Proof: We will prove the contrapositive. Ie. we will show that if there is some coefficient of g
that p does not divide, and also some coefficient of h that p does not divide, then there must be a
coefficient of f that p does not divide.

It may help to do an example. Suppose g=3 +6X +2X2 +3X3 and h =12 + 4X +2X2. Then
we claim 3 cannot divide all coefficients of gh. Notice 3 divides all coefficients of g up until the
X2 coefficient, and all coefficients of h up until the X! coefficient. Adding those degrees gives
2+1 =3, so look at the X3 coefficient of f = gh.

The X3 coefficient of gh is a sum of products,

(6X)(2X2) + (2X2)(4X) +(3X3)(12). Each of these products involves a factor from one of the

coefficients of p did divide in either g or h, except for (2X2)(4X), obtained from multiplying the
two lowest coefficients of g and h that p did not divide. Since p divides two of these terms but
not the third, by the three term principle 3 cannot divide their sum.

Here is the general proof:

Assume that g=bQ + b1 X + ....+bpXM, and h = cg + ¢1 X +..... e XM, Let br be the lowest
degree coefficient of g that p does not divide, and let cg be the lowest degree coefficient of h that
p does not divide. Le. p divides every coefficient in g of form b(r-j) fori >0, and every
coefficient in h of form C(s-j) forj > 0.

Then we claim that p does not divide the coefficient of the X(I*+S) term in gh. Look at the
coefficient of the X('*S) term in gh.



It equals a sum of terms of form b(r-i)c(s+i) and terms of form
b(r+j)0(s-j), withi>0and j> 0, as well as the term bycs.

Now by hypothesis, p divides all the coefficients of form b(r-i) and all the coefficients of form
C(s-j)- Hence p divides every term of form

b(r-i)¢(s+i) and every term of form b(r+j)C(s-j), but not the one term bycg. Hence by the
generalized three term principle, p cannot divide their sum, i.e. p cannot divide the coefficient of
the X(**S) term in f = gh. QED

Notice that to follow a proof like this, or any proof of this nature, you must have done enough
examples that you can visualize in your mind's eye what the terms look like.

Remark: This is the same proof as before, but without the modular integers. L.e. after reducing
these polynomials mod p, the terms of g below degree r become zero, so the lowest non zero

coefficient of {g} is {br}XT, and similarly the lowest non zero coefficient of {h} is {cs}XS. Then
the lowest coefficient of {gh} is {bycs}X(rts), which is also non zero in Zp, since Zpis a

domain. But this coefficient of {gh} equals the coefficient of X(I+S) in gh, only taken mod p.
Hence p does not divide the corresponding coefficient of gh.

So the simplification here was to reduce the coefficients of g and h mod p separately, and then
multiply, instead of multiplying first and then reducing mod p. That these give the same result
was exactly the step we (and the book) omitted proving, hence the reason the book's proofis
easier is that it left out some of the steps. (Of course the book had done this proof in the case of
modular integers Zp, but not in the related case of polynomials with modular integer coefficients

Zp[X1)



4000/6000 Fundamental homomorphism theorem

We have omitted four topics from the course that are contained in the first five chapters
of the book, (i) the quadratic and cubic formulas, (i) the isometries of the plane, (iii) the study of
finite fields more complicated than the rings Zp, (1v) the general concept of an ideal I in a ring R,

the associated construction of a modular ring R/1, and the theorem that a surjective
"homomorphism" f:R-->S induces an isomorphism of R/I with S, where I is the ideal {x in R:
f(x) =0}.

The quadratic formula is familiar from high school. If you make a clever substitution,

you can transform any quadratic equation into one that has the simpler form X2 = d. Then the
answer can at least be denoted as X = sqrt(d), although computing sqrt(d), or approximating it,
remains a problem. There is an even cleverer substitution for cubics, that transforms them

essentially into the form X0 + bX3 + c. This is a quadratic in disguise, namely Y2+bY+c, where

the variable is Y = X3, so one can use the quadratic formula to write Y in terms of a square root,
and then X is the cube root of that expression for Y. Thus the solution to a cubic can always be
written using only square roots and cube roots. This is nice and can even be done for 4th degree
or quartic equations, but the procedure is unenlightening, since it is not easy to understand how
anyone thought of these tricks. The really insightful investigations were made later, which reveal
why these tricks run out of steam with 5th degree equations, quintics, and why there are quintic
equations whose solutions cannot be written using formulas containing only coefficients of the
equations, and various roots of expressions in them. Thus the time to look at the cubic formula
may be when studying the later material on Galois theory.

The history of this topic is also exciting. Intellectuals used to challenge each other to
algebra duels, tantalizing each other with problems to solve, and the guy with the cubic formula
always came out on top. Since this situation was intolerable to his rivals, some of them also
doped out the formula I believe, maybe with some secret help from someone who had been told
the trick and promised to secrecy. Finally Girolamo Cardano published the formula in a book,
not the man who found it first, and ever since, history has placed called it "Cardano's formula”,
even though everyone knows he did not discover it. This enraged the true discoverer, even
though Cardano gave him proper credit in the book.

Many of us also know of the tragic history, centuries later, of young Evariste Galois, a
brilliant but rash French student and political activist, whose insinuated threats against the king
probably led to the duel in which he was killed at the age of 20 or 21. Feverishly, the night
before the duel, he wrote up the results of his research, hoping someone would make use of it
afterwards. It took some time for the great mathematician Liouville to actually understand what
Galois had written that night, and reveal to the world the beautiful and complete answer to the
problem of solution formulas he had discovered. After his tragic death, or assassination, he was
at last regarded as a genius, whereas in his life he had even been denied access to the best
schools. Recall in analyzing constructibility problems, that we have studied only the vector
dimension of root fields, ignoring the multiplication rule in a field of form Q[X]/(f), and using
only the degree of f. This is sufficient to get some handle on fields obtained by adjoining only
square roots, i.e. constructible fields. To understand whether a root field can be obtained by
successively adjoining higher order roots, i.e. whether its elements can be expressed using
"radicals”, Galois analyzed the symmetries of the field, the family of self isomorphisms of the
field, called its "Galois group". This is covered later in our book.

The isometries of the plane are nice too, but we cover them in another course on



transformation geometry, and they are in there as a predecessor to the study of groups, in chapter
6. Those of you continuing into 4010/6010 will benefit from reading those sections before (or
while) studying chapter 6 on groups. The finite fields containing more than p elements, for

example there is one containing p2 elements, and one containing p™ elements for every n > 0,
must be interesting, but I guess I don't know much about why that is. They do not greatly interest
me - just ignorance I guess. Maybe a number theorist could enlighten me on their value, or
someone knowledgable about codes. I confess though, I have always become interested in
almost anything in mathematics, after learning enough about it to appreciate it.

The last topic above, ideals and modular rings and homomorphsms, is undeniably
important, and we have already been using them in several fundamental examples. The general
statements in chapter 4 are probably less important than the examples we have already studied,
but it is helpful to see how the important examples we have studied give rise to the more general
idea in chapter 4, so I will say a few things here summarizing sections 4.1 and 4.2.

Basically they generalize the construction of the modular rings Zp, and F[X]/(g(X)). Le.

in those cases we took a ring, and an element of that ring, and we set all multiples of that element
equal to zero, and set two elements equal to each other if they differ by a multiple of that one
clement. The new idea is to use more than one element of the ring. Ie. suppose R is a ring, and
we take two elements x,y of R, and set equal to zero any multiple of x, and also any multiple of y.
Since the sum of two zeroes is also zero, then we have to set equal to zero also any sum of a
multiple of x and a multiple of y. Thus we set all linear combinations of form ax-+by, equal to
zero, where a,b are in R. Then to get an equivalence relation in our ring, we set two elements of
R equal to each other iff they differ by an element of form ax+by. We get a modular ring of these
equivalence classes which we write as R/(x,y). Thus in this new ring R/(x,y), elements like
[ax+by] become equal to [0], and hence two elements like [z] and [z+ax+by] become equal.

Remark: In the case of most of the rings we have been studying this would not give us
anything new, because in both Z and F[X], the set of linear combinations of two things is just the
same as the multiples of the ged of the two things. This is true in any ring with a division
algorithm. This is exactly whjat the linear combination propperty says. Le. in any ring with the
division theorem, given any two elements, not both zero, the smallest non zero linear
combination of them, their gcd, divides both of them. Hence the set of linear combinations of the
two original elements is exactly the same as the set of multiples of the ged. But this is not true in
the ring Z[X], and not in rings of polynomials with more variables, like Z[X,Y], Q[X,Y], or
Q[X,Y,S,T]. E.g. there is no one polynomial in Z[X,Y] whose multiples are the same as linear
combinations of the two elements X,Y. For example, in Z[X,Y], both X and Y are linear
combinations of X,Y, but the only polynomials dividing both X and Y are 1 and -1. Thus 1 is the
ged of X,Y. Yet 1 is not a linear combination of X,Y. (Why not? A linear combination of X,Y
equals zero when we set X =0 =Y, but 1 never equals zero.) Thus the multiples of 1 are not the
same as the linear combinations of X,Y.

In those rings we need the more general concept of ideals consisting of linear
combinations of more than one element. In particular we can do this construction for more than
two elements. Le. let R be a ring and x1,....,xp any finite set of elements in R. Then we can set

equal to zero any linear combination of form a1x+....+apxp, with aj,....,an elements of R.
Again we set two elements of R as equivalent if their difference is a linear combination of this



type. We get another modular ring which we denote by R/(x1,....,xpn). The set of all these linear
combinations a1x}+....+anXy is called the "ideal" generated by the set X1,....,xpn. Since the sum
of two linear combinations is another linear combination, and a multiple of a linear combination
is also one, it follows that any linear combination of linear combinations is also a linear
combination. Thus an ideal is closed under taking linear combinations. For this reason, it is
common to define an ideal in R more abstractly as any non empty subset I of R which is closed
under taking linear combinations of its elements with coefficients from R. Then we get a
corresponding modular ring called R/I, whose elements are equivalence classes of elements of R,

under the equivalence relation that x and y in R are equivalent (mod I) iff x-y belongs to the ideal
L.

The reason for this construction is just to give a way of forming a lot of different rings out
of a few standard rings. Le. all the fields Zp can be constructed in this way from the ordinary
integers Z. More useful to us, every subfield F of C, which is finite dimensional as a Q vector
space, can be constructed in this way from the one ring Q[X]. Let us prove at least part of that
fact, as an illustration of the "fundamental homomorphism theorem" from chapter 4. We take for
granted the more difficult result that every finite dimensional field extension of Q has the form
Q[r] where r is a root of an irreducible polynomial in Q[X]. (In general a finite dimensional field
extension of Q has the form Q[r1,....,rn] where the rj are roots of different polynomials f1,....,f,
but a nice theorem says that we can always find a suitable element r such that Q[r] = Q[r1,....,rn].
Remember for instance we showed that Q[sqrt(2), i] = Q[sqrt(2)+i].) Then we prove that every
such field Q[r] can be represented by the modular construction above, applied to Q[X]. First we
introduce a language for comparing different rings.

Definition: Given two rings R,S, a homomorphism from R to S is a function with domain R and
range S, 1.e. it is a mapping f:R-->S that takes each element x of R and transforms it into an
element f(x) of S. It is also required that sums go to sums and products go to products, i.e. that
for all x,y in R, we have f(x+y) = f(x) + f(y), and f(xy) = f(x)f(y). Finally we also require that
f(1)=1.

Examples: The map from Z to Zj, taking x to [x] is a homomorphism. The map from Q[X] to
Q[i] taking X to i and more generally taking f(X) to f(i), is a homomorphism. If g is an element
of Q[X], the map taking X to {X} in Q[X]/(g), and more generally taking f(X) to {f(X)}, is a
homomorphism.

Definition: A homomorphism which is both one to one and onto) is called an isomorphism. If
there is an isomorphism from R to S we say that R and S are isomorphic. (There may be no
isomorphism, or more than one, between two given rings.)

In some sense isomorphic rings are almost the same. I.e. they may consist of different
elements, but their elements have the same arithmetic relations to each other. There is a way to
make elements of one ring correspond to elements of the other, so that corresponding pairs of
elements have corresponding sums and products. Anything you understand about one ring, you
also understand about every ring isomorphic to it. Isomorphic rings are not quite the same,
because there may be more than one isomorphism betwen them, i.e. there may be more than one
way to match up their elements still preserving all the ring operations. Thus if there are several



isomorphisms between two rings and we have not chosen any particular isomorphism, then given
an element of one ring there is still no way to say which element of the other ring it corresponds
to. Once you choose an isomorphism, then the two rings may be regarded as the same, by means
of that isomorphism, i.e. then you know for each element of one ring, which element of the other
it corresponds to, by the given isomorphism.

If a ring has some symmetry, it may be isomorphic to itself in an interesting way, i.e. by
some correspondence other than the trivial one taking each element to itself. For instance the
complex numbers C have one non trivial isomorphism taking a+bi to its conjugate a-bi, since we
know the product of conjugates is the conjugate of the product, and also the conjugate of a sum is
the sum of the conjugates. The secret of Galois' theory which reveals why some equations have
solution formulas and some do not, is to go beyond our study of just the dimension of a field
extension, and explore also the symmetries of the field, i.e. the isomorphisms it has. Since every
root field extending Q is isomorphic to a modular ring constructed from Q[X], understanding
isomorphisms of root fields will be easier if we study first how to construct homomorphisms of
modular rings. That is the content of the "fundamental homomorphism theorem".

First we illustrate it in our most important example.

Theorem: Let r be any complex number which satisfies an irreducible polynomial g in Q[X].
Then the two fields Q[r] and Q[X]/(g) are isomorphic, under the mapping taking {X} tor, and
more generally taking {f(X)} to f(r).

Proof: First we show the mapping Q[X]/(g)-->Q[r] taking {f} to f(r) is well defined. Le. in the
ring Q[X]/(g), the element {f} is equal to the element {f + gh} for every polynomial k in Q[X].
Thus the rule defining our mapping must tell us to send {f} to the same element of Q[r] as we
send {f+ gh} to. But we send {f} to f(r) and we send {f+gh} to (f+gh)(r) = f(r) + g(r)h(r) = f(r),
since g(r) = 0. So this is all right and we really have defined a function or mapping from
Q[X]/(g) to Q[r].

Next we ask if this mapping preserves addition. Le. does {f+h} map to the sum of what
{f} and {h} map to? Well {f+h} maps to (f+h)(r) = f(r) + h(r), so yes. The same goes for
multiplication, since (fh)(r) = f(r)h(r). What about {1}? Does it map to 1? Yes, since evaluating
the constant polynomial 1 at r, gives the number 1.

Next we check one to one and onto. Ontoness is easy since every element of Q[r] has the
form f(r) for some polynomial fin Q[X]. This is the image under our map of the element {f}, so
the map is onto. For one to oneness, we ask when two elements {f} and {h} have the same
image in Q[r], i.e. when does f(r) = h(r)? Well this happens exactly when (f-h)(r) = 0. Here is
where we use the hypothesis that g is irreducible. Le. we know thatris root of g, and g is
irreducible, so by a proof we have given before, any polynomial in Q[X] satisfied by r must be a
multiple of g. Ie. suppose k is a polynomial in Q[X] which is a multiple of g. Then say k = gm,
for some polynomial m, so k(r) = g(r)m(r) =m 0, since g(r) = 0. Conversely ifk is not a multiple
of g, then since g is irreducible, g and k are relatively prime, and thus there exists a linear
combination of form gA + kB = 1. Then since r is not a root of the RHS, it is not a root of both g
and k. Le. if k is not a multiple of g, then r is not a root of k.

Thus we have proved that if {f} and {h} have the same image in Q[r] under our map, i.e.
if f(r) = h(r), then (f-h)(r) = 0, so f-h is a multiple of g. But if f-h = gk, then f = h+gk, so then by
definition of equality in our ring Q[X]/(g), we must have {f} = {h}. Le. if two elements {f} and
{h} in the ring Q[X]/(g) map to the same element of Q[r] under our map, then those two
elements are equal in Q[X]/(g). Thus our map from Q[X]/(g) to Q[r] is one to one. Thus our
map taking {f} to f(r) is an isomorphism from Q[X]/(g) to Q[r]. QED.



The general result is less interesting, but will come in handy in future explicit situations, so we
give the definitions.

Definition: Let R be any ring and {xj} A any indexed collection of elements of R, possibly
infinite. Let I =I({xj}A) = the set of all finite linear combinations bi1xj1+....+binXin of elements
Xj in the collection {xj} A with coefficients bj in R. This set is called the ideal generated by the
set {Xj}A.

Lemma: (a) The ideal I generated a non empty subset of a ring R, is always non empty and is
closed under forming linear combinations. Ie. given any finite set of elements y] »---s¥n Of the

ideal I, and any set of coefficients b1,....,bn of R, the element b1y1+....tbpyn is also in 1.

(b) Conversely any subset I of R which is both non empty and closed under forming
linear combinations is the ideal generated by some non empty subset of R, for example we could
take the whole set I as a generating set.

Proof: This sort of thing is just done by bashing it out step by step. Certainly an ideal
generated by a non empty set s itself non empty since it contains 0, obtained from any finite
linear combination with all coefficients equal to zero. Then we can check that a sum of linear
combinations is a linear combination, and more generally that a linear combination of linear
combinations is again a linear combination. Thus an ideal is non empty and closed under
forming linear combinations.

Now if I is any non empty set which is closed under forming linear combinations,
consider the set of all linear combinations of elements of I. This is by definition the ideal
generated by the set . We claim I itself is the ideal generated by I. We certainly do get each
element in I as a linear combination of elements of I. Namely if ais in I, then a = 1a, is a linear
combination with one non zero coefficient equal to 1. On the other hand since we assumed I is
closed under forming linear combinations, we cannot get anything else except elements of I as
linear combinations, so we get exactly I as the ideal generated by I. Well that wasn't so bad, just
boring. QED.

This next result is more interesting, the connection between ideals and homomorphisms.
Lemma: Let R,S be rings and f:R-->S a homomorphism from R to S. If we define

ker(f) = kernel(f) as the set of those elements x of R such that f(x) = 0, then ker(f) is an ideal of
R.

Remark: Thave no idea why this set is called the "kernel of f". In linear algebra a more
plausible term is used such as "null space of ", since "null" is roughly a synonym for zero.
"Kemnel" is probably a translation of a German word from one of the early papers on the topic.
Remember the first person to use a concept gets to name it whatever they want.

Proof: It suffices by the previous result to show that ker(f) is non empty and closed under linear
combinations. First we show closure under (finite) linear combinations. Let x],....,xn be any
finite set of elements of ker(f), i.e. assume they all map to zero under £, and let al,....,an be any
clements of R. We must show that ajx]+....+anxp also maps to zero. Since fis a
homomorphism, hence preserves sums and products, fa1x1+....+anxn) = a1 f(x1)+....+anf(xn)
which equals zero, since for eachi = 1,....,n, we assumed f(xi) = 0.

Next we show ker(f) contains 0, hence is non empty. To show f(0) = 0, let's see, surely I



can do this after all these years, but right now it is not coming to me. Oh, I remember now, since
0 = 0+0, then f(0) = f(0+0) = f(0) + £(0), so subtracting f(0) from both sides gives 0 = f(0). OK, I
admit sometimes it helps to have some stuff memorized. QED.

The reason ideals are important is in the following result, the converse of the previous one, that
every ideal is a kernel of some homomorphism. Well. almost all. Actually in any ring R,
technically R itself is an ideal, and that ideal, called the unit ideal, cannot be the kernel of a
homomorphism because we said a homomorphism had to send 1 to 1. If R were the kernel os
sone homomorphism then all of R, including 1, would go to zero. So we prove every other ideal
except R itself, is the kernel of some homomorphism.

lemma: In a ring R, let I be any ideal except R, and define a modular ring R/I as equivalence
classes of elements of R, where x,y in T are equivalent in R/I if and only if x-y belongs to I.
Then the mapping f:R-->R/I taking an element a to its equivalence class {a} is a surjective (i.e.
onto) homomorphism with kernel 1.
Proof: The definition of addition and multiplication in R/ is as follows. We define {a}+{b} to
be {at+b}. For this to make sense, we must check that if {a} = {c} and {b} = {d} then {a+b} =
{ctd}. But {a} = {c} means that a-cis in I, and {b} = [d} means that b-d is in I. Then since I is
closed under addition, also (a-c) + (b-d) = (a+b -(¢+d)) is in I. Hence {a+b} = {c+d}, as desired.

For multiplication, assume again that {a} = {c} and {b} = {d} and ask whether {ab} =
{cd}. Well, {a} = {c} so a~cisin], and {b} = {d} so b-d is in I, so their product is also in I, so
we want to show that also ab-cd is in I. I think I remember how to do this. Let's try this: a-c=x
inl, so a=c+x, and c-d =yisin, so ¢ = d+y, so ab = (c+x)(d+y) = cd + dx + cy + xy. Now
since an ideal is closed under linear combinations, the fact that x,y, are in I implies that also dx +
cy +xyisinl. Soab-cd=dx +cy+xyisinl Hence {ab} = {cd} as desired. Thus the map
taking a to {a} is a homomorphism.

That fis onto is trivial, since if {a} is any element of R/I then a maps to {a}, so fis onto.
For the kernel, this is also trivial since if a goes to zero, then {a} = {0}. But by definition {a} =
{0} iff a-0 = a belongs to I. QED.

Finally we want to show a partial converse to the last result.

Proposition: If f:R-->8 is a surjective homomorphism with kernel I, then S is isomorphic to R/I,
via the map F taking {r} to f(r).

Proof: First well definedness of F. I.e. we want to map {r} to f(r). So we must check that if {r}
= {s} then F({r}) = f(r) = f(s) = F({s}). But by definition, if {r} = {s} then r-s is in I = ker(f), so
f(r-s) = 0, hence f(r) = {{(s), as desired. As to the homomorphism property for F, we claim that
F({ax+by}) = F({a})F({x})*F({b})F({y}). But this is trivial since F({ax+by}) = f(ax-+by), by
definition of F, = f(a)f(x) + f(b)f(y), since f is a homomorphism = F({a})F({x})+F({b})F({y}),
by definition of F. Thus once F has been shown to be well defined, the homomorphism property
for F follows immediately from that for f.

Now to show F is an isomorphism, we must show it is both one to one and onto. Since f
was onto, if y is any element of S, then there exists some element x of R such that f(x) = y, and
then F({x}) = f(x) =y, so F is also onto.

For one to oneness, we must show if two elements {a},{b} of R map to the same element
of S under F, then {a} = {b}. Butif F({a}) = F({b}), then f(a) = f(b), so f(a-b = 0, so a-b belongs
to I, so {a} = {b}, as desired. QED.



The fact that there is nothing new in these constructions for our familiar rings in which the
division theorem is true, follows from the same ideas as always, but we spell it out explicitly as
follows.

Definition: Anideal I in R is called "principal"” if there is some one element a of that ideal, such
that I consists precisely of all multiples of a by elements of R. A ring is called a "principal ideal
domain" (or p.i.d., or just pid) if it is a domain, and all ideals in R are principal.

Proposition: If R is a domain having a notion of size for which the division theorem is true, then
R is a principal ideal domain, and if I is any ideal of R, and a is a non zero element of I of
smallest size, then I consists of all multiples of a.

Recall: Our hypothesis means that there is a size function d:R-{0}-->N assigning a natural
number to every non zero element of R such that for any two elements a,b of R with a # 0, we
can divide b by a, either exactly or with a remainder smaller than a, in the following sense. There
exist elements q,r such that b = aq + r, and either r= 0, or d(r) < d(a).

proof of proposition: The zero ideal of R is generated by the element 0, so it is principal. Hence
assume I contains some non zero elements, and that a is a non zero element of smallest possible
size. We will show every element of I is a multiple of a, so let b be any elemnt of I. Then by
hypothesis there exist elements q,r of R such that b = qa + r, and either r = 0, or d(r) < d(a). We
will show first that r belongs to I. This is trivial since r = b-qa, and both a and b are in I, and
since an ideal is closed under linear combinations, the linear combination b - ga of b and a is also
in I. Thus if r were non zero the fact that d(r) < d(a) and that a has smallest size of all non zero
elements of I would be a contradiction. Hence r = 0, so b = qa, hence b is indeed a multiple of a,
and we are done. QED.

The property of all ideals being principal lies behind most of the results we obtained earlier from
the division theorem. For example it is easy to prove the linear combination property, and the
relatively prime divisibility property from the principal ideal property as follows.

Proposition: if R is any principal ideal domain, and a,b are relatively prime, then there exist
elements x,y in r such that ax+by = 1.

proof: Consider the ideal (a,b) generated by a and b, i.e. consisting of all linear combinations of
aand b. Since R is a principal ideal domain, this ideal must be principal, so there exists an
element u in R such that (a,b) = (u) = all multiples of u. Since (a,b) = (u), we can writeu as a
linear combination of a and b, so there exist elements z,w such that za + wb = u.

But since both a and b are in (a,b) = (u), then both a and b are multiples of u, i.e. uisa
common factor of a and b. But the assumption that a and b are relatively prime means then u
must be a unit. Since u is a unit, if v is its inverse we then have vzatvwb =vu=1. Thusifx =
vz and y = vw, we get xa + yb = 1 as desired. QED.

Proposition: If a,b, are relatively prime elements of a principal ideal domain R, and a divides bz,
for some z in R, then a divides z.

proof: This follows by the same argument as before since we can use the linear combiantion
property. l.e. there exist x,y such that ax+by = 1. Then axz + byz = z, so since a divides a and
bz, a also divides axz and byz, i.e. a divides the left side of the equation axz + byz=1z, so a



divides the right side too. QED.

The prime divisibility property follows as usual, as does the uniqueness of prime factorization,
(up to order and units). We must work a little harder to prove existence of prime factorization in
a principal ideal domain, (without using the division theorem) but it is true. I will sketch the
argument that a non unit element of a pid has at least one irreducible factor. If R is a p.i.d., and a
is a non unit in R, supopose a has no irreducible factors. Then we can write a = aja2 where (both
factors are non units and) neither factor is irreducible. Hence we have a proper containment of
ideals (a) contained in (a2). Since a3 is not irreducible we can write a) = a3a4, where neither a3
nor a4 is irreducible. We have another proper containment of ideals (a) contained in (a2)
contained in (a4). If we never find an irreducible factor of a, this process keeps up forever and
we get an infinite sequence of ideals properly containing those before: (a) contained in (a2)
contained in (a4) contained in (ag),........ , etc. This gives a contradiction as follows. The union
of an infinite family of increasingly larger ideals is easily shown to be closed under linear
combinations, hence to be an ideal, hence to be equal to (b) for some b in R. Then b must be
contained in one of the ideals (apn). But if b is in (a2p), so are all multiples of b, i.e. so is the
whole union of all the ideals (a2k). This says that all the supposedly larger ideals (aQk+2),
(a2k+4),...etc, are actually no larger than (a2k), a contradiction to our assumption.

In a similar way we can prove that any non unit element a in a pid, factors completely into
irreducible elements. I.e. suppose a is a non unit but cannot be written as a product of irreducible
elements. Then a is not itself irreducible so a = ajap where (both factors are non units and)
neither factor is irreducible. Moreover if both factors can be factored into irreducible factors,
then combinaing those factors would give an irreducible factorization of a, so at least one factor
say a2 cannot be written as a product of irreducibles. Then a2 is not irreducible, so a2 = a3a4,

where neither a3 nor a4 is irreducible, and again at least one factor say a4, cannot be written as a
product of irreducibles. This gives again an infinite sequence of non unit elements a, a2, a4,....,

each one divisible by the next one, hence an infinite increasing sequence of principal ideals,
hence a contradiction as before.

Thus every domain having the division theorem is a principal ideal domain, and every principal
ideal domain is a unique factorization domain (or ufd). There are principal ideal domains which
do not have the division property, but I do not happen to know any examples, and there are many
unique factorization domains which are not principal ideal domains. Indeed we could easily
prove that the domain Z[X] (in which the ideal (2,X) is not principal) is a unique factorization
domain, using Gauss's lemma to deduce it from the unique factorization property for Q[X]. A
similar method shows also that R[X] is a ufd whenever R is a ufd, and hence by induction that
k[X1,.....,Xn] is a ufd for any field k.



