4000/6000 Day 24 Dimension of vector spaces

Our next challenge is to give a precise meaning to statements like "Q(sqrt(2)) has dimension 2
over Q", and "Q(cuberoot(2)) has dimension 3 over Q". Intuitively, the dimension of a space V
over F is the answer to the question "how many elements of V do you need to use, so that all
other elements of V can be written as linear combinations of those elements, with coefficients in
F ?" Since every element of Q(sqrt(2)) can be written in the form, a + bsqrt(2), where a,b, are
rational numbers, the two elements {1, sqrt(2)} suffice to describe all other elements of
Q(sqrt(2)) as linear combinations over Q. Since this cannot be done with fewer than two
clements, the dimension of Q(sqrt(2)) over Q is 2. Making this precise and proving it, requires a
bit of work, in particular some careful definitions.

Definition: A vector space over a field F is a set V in which an addition is defined which is
associative and commutative, there is an additive identity, and additive inverses exist. Thus all
the properties of a field hold for the operation of addition. (It may not be possible to multiply
elements of V by each other.) However, it is possible to multiply elements of V by elements of
the field F. This multiplication is distributive in both senses, i.e. (atb)v=av + by, if a, b, are in
Fand visin V, and also a(v+w) = av + aw, forain F, v,w, in V. Itis also “associative” in the
sense that (ab)v = a(bv) for a,b, in F, vin V. We also require that 1v =v, for all vin V. See
chapter 5.1 for the complete list of axioms.

A subspace of a vector space is a subset which is also a vector space (with the same addition and
scalar multiplication). To check whether a subset is a subspace, most of the axioms are
automatic because they hold in the larger space, so it suffices to check the subset is non empty
and closed under the two operations, addition of vectors, and scalar multiplication.

Our job in computing the dimension of a space, or of a subspace, is to determine the smallest
possible number of vectors which suffice to describe all other vectors in the space as linear
combinations. We are all familiar with the vector space R3 over the real number field, where the
three vectors (1,0,0), (0,1,0), and (0,0,1) suffice to describe all other vectors as linear
combinations of these. Le. the vector (a,b,c) = a(1,0,0) + b(0,1,0) + ¢(0,0,1). Since this cannot
be done with only two vectors, R3 has dimension 3 over the field R.

Learning how to tell we actually have the smallest number of vectors possible to describe all
others, is our main task.

Definition: If {v1,....,vr} is an indexed set of elements of a vector space V, and w is any element
of V, we say w "depends on" the set {V1,....,vr} if there exist elements cq,....,cy of F (called
"scalars"), such that w = c]v{+....+¢cpvy, i.e. if w can be written as a linear combination of the

vectors {V1,....,Vr} with coefficients in F.

Example: The zero vector depends on any set {V1,....,vr} since we can take all the coefficients
Cl,.-..,.Cr to be zero. The linear combination Ovi+....+0vy = 0, in which all the coefficients are
zero, is called the trivial linear combination.

It may be possible to write the zero vector also as a non trivial linear combination, for some sets



{v1,....,vr}. Forinstance if v] = v2 (which is allowed), we can write 0 = v1-v2 where the first
two coefficients are 1 and -1 (and the rest are zero).

Each of the vectors v1,......,vr in the set {v1,....,v¢}, depends on the set {v1,....,vr}, since we can
write v] for instance as v1 = 1v] (and all other coefficients zero).

Exercise: Given any indexed set of vectors S = {v1,....,vr} in V, the subset of V consisting of
those vectors which depend on the set S, forms a subspace of V containing S. It is the smallest
subspace of V containing S. We denote this subspace "span({v1,....,v¢})", or span(S) and call it
the subspace "spanned" by the set S.

Definition: An indexed set of vectors S = {v1,....,vy} in V "spans" V, if every vector in V
depends on S.

Now we want to characterize when a spanning set is "minimal", i.e. as small as possible. There
are two sense in which one can mean that a spanning set S is "as small as possible". One could
mean that no proper subset of S still spans, or one could mean there is no other spanning set with
fewer elements. Fortunately these two meanings turn out to be equivalent when taking our
coefficients from a field. This is one of the nice features of vector spaces.

Notice however that when taking linear combinations of integers this would not be true. Le.
every integer is a linear combination of the integers 3 and 5 (since they are relatively prime you
can get 1, and then you can get any integer), but not of either one of them alone, so this
"spanning" set is minimal in the sense that no proper subset still suffices to express every integer.
But it is not minimal in the second sense, because there is another set with fewer elements,
namely the set {1}, which also suffices to express every integer as a linear combination.

The next definition is extremely important. Experience shows it is difficult to understand and
memorize accurately, and it deserves lots of practice.

Definition: An indexed set S = {v1,....,vr} of vectors is independent (over F) if the only linear
combination that equals the zero vector, is the trivial one with all coefficients equal to zero, i.e. if
Clvlt... crvr =0, implies that all ¢ = 0.

A set which is not independent is called dependent. Thus an indexed set S = {v{,....,vy} is
dependent if there exist scalars c1,....,cr which are not all zero such that clvit...tcrvr=0. Le. S

is dependent if the zero vector can be expressed as a non trivial linear combination of the vectors
{V1,-eeryVr}.

(Notice the zero on the right of the equation c]v]+....+cpvr = 0 is the zero vector in V, while the
zero in the equation cj = 0 is the zero scalar. We are writing two different objects with the same

symbol, and I hope it does not cause a problem. In our main application, where our vector space
over F is a field E containing F, it will not be a problem since then the two objects are actually
the same. Le. the zero element of the field E will equal the zero element of the subfield F.)

Example: The set {(1,0),(0,1)} in R2 is independent over R since if a(1,0)+b(0,1) = (0,0), then



(3,0)+(0,b) = (a,b) = (0,0), so both a=0 and b = 0. The set {(1,0), (0,1), (1,2)} is dependent,
since (1,0) +2(0,1) - (0,2) = (0,0). The indexed set {v] = (1,0), v2 = (1,0), v3 = (0,1)} is also
dependent, since the repetition allows us to write (0,0) = v{ - v2 +0v3, with coefficients 1,-1,0.

The next property is special to vector spaces, e.g. it would not be true for integer linear
combinations.

Lemma: (1) A set S = {v1,....,vr} is independent, if and only if none of the vectors in S can be
written as a linear combination of the others.

(2) If S is a spanning set for V, then S is independent if and only if no proper subset of S spans V.
(Thus an independent spanning set is minimal.)

Proof: (1) We will show the contrapositive, that S is dependent if and only if some vector in S
does depend on the others in the set. If S is dependent then there is a non trivial linear
combination 0 = ¢1v]+....+cyvr in which at least on coefficient is non zero. Assume, after

renumbering, the non zero coefficient is ¢] # 0. Then we can solve for ClV] =-C2V2 -C3V3 .....-
Crvr, and since c] is a non zero element of a field, we can divide by it, and get v] = -(c2/c1)v2 -
(c3/€1)V3 .....-(cr/c1)vr, which shows that v1 depends on the other vectors {V2,eeesVr}.
Conversely, if say vi depends on the other vectors {v7,....,vr}, by means of a linear combination
V] =apv) +a3v3 ....tarvr, then we can write the zero vector as

0=-v] +apv)+a3v3...+apvy. This is a non trivial linear combination since the first
coefficient is -1 # 0, so the set S = {v1,....,v¢} is dependent.

(2) If' S is a spanning set for V we will show S is dependent if and only if some proper subset of
S does still span V. If S is dependent, then some vector in S, say v1, depends on the others, e.g.
(*) v1 = a2v2 + a3v3 ....+arvy for some coefficients aj. Then we claim the subset {v2,....,vr} still
spans V, since we can use the equation (*) to substitute for v1 in any linear combination. Le. if w
is any vector in V, w depends on S, so there is a linear combination w = c1vit...tcrvr. Then
using (*) we get w = c1(a2v2 + a3v3 ....+apvy) +cavot..... vy

= Cla2v2 t cla3v3 ....tclarvy +CQvo+.....+Crvr

= (c1a2+c2)v2 + (c1a3+c3)v3+....H(clarter)vr,

which shows that w depends on the proper subset {v7,....,vs}.

Conversely, if some proper subset of S still spans, then some subset spans which is obtained by
removing only one element, say vi. But if {v),....,vt} still spans V, then in particular v] depends

on this set by a linear combination v] = apv) + a3v3+ ..... +arvy. Then 0 = -v] +apv) + a3vy
..... +arvr, so the set {v], v2,....,vr} is dependent.
QED.

Definition: A subset S = {v1,....,vr} is called a basis of a vector space V over F, if and only if S
is independent and spans V.

The main result that allows us to define dimension is the next one.

Theorem: Every vector space has a basis, and any two bases have the same number of elements.



Sketch of proof: It is not difficult to produce a basis of a space in case there is a finite spanning
set. If our spanning set is independent, it is already a basis. If not, there is some vector in it that
depends on the others, and it can then be removed and the remaining set still spans. Ifthe
remaining set is now independent, we have a basis. If not, we can remove another vector and
still have a spanning set. If we ever get to an independent spanning set we have a basis. If not,
we get down to a set of only one vector, which still spans but is not independent. Now if a vector

v i non zero, then the set {v} is independent. Le.ifc#0, and cv=0, thenv=1v= (c‘lc)v) =c"

lev)y=c1=0,s0itis impossible to have a non trivial expression cv = 0, when v # 0. Thus
when we get down to one vector, if it is non zero it is a basis, and if it is zZero, since it spans V,
then the space V = {0}. If the space is just {0}, we agree that the empty set is a basis. IfV # {0}
is a non zero vector space with a finite spanning set, by this process we get a finite basis for V
with > 1 element in it.

The proof that any two bases have the same number of elements is more work, but it follows
from the results of Math 3000. Le. if {v1,....,vy} and {w1,....,wg} are two bases of V, then each

vector vj can be written in terms of the vectors {w{,....,wg} using a sequence of scalars
(al,....,ag). Viewing this sequence of scalars as a column in a matrix, the vectors {V1,....,Vr} are
represented as the columns of an "s by r" matrix A. Then a linear combination ¢]v]+..... +Crvr, 1S
equivalent to a linear combination of the columns of the matrix M, i.e. to a matrix product of M
with the column vector [¢] ¢) ........ cr]. Recall that a homogeneous system of linear equations
has a non trivial solution if there are more unknowns than equations, i.e. if in our matrix M, we
have r > s, then there is a non zero column vector c = [c] ¢ ........ cr] such that Ac=0. Thusifr
> s then the set {v1,....,vr} would be dependent, a contradiction since it is a basis. Thus if
{V1,-...,vr} and {w1,....,ws} are both bases, then r <s. Doing the argument in the other order, we
gets <r,sor=s. End of proof sketch.

More details.

If we form row vectors V = (v1,....,vr) and W = (w1,....,ws) made up of the vectors in our two
sets, and if the set of w's spans, then there is an s by r matrix of numbers M such that WM = V.
We claim if r > s, then the set of v's is dependent, i.e. there is a column vector X of numbers, not
all zero, such that VX = 0 (= the zero vector). It would suffice to have such a column vector X
(i.e. a column of numbers in our field, not all zero) with MX = 0 (= the zero column vector),
since then we have VX = (WM)X = W(MX) = W0 = 0. But ifr > s, then the s by r matrix M has
more columns than rows, hence by Gaussian elimination, there is a column vector X of numbers,
not all zero, such that MX =0 (= the zero column vector). QED.

Definition: The dimension of a vector space V over F, is the number of vectors in a basis for V
over F.

Thus if V is a vector space and S = {v1,....,v¢} is an independent spanning set for V, then the
dimension of Visr.

Now let's get down to business and compute some dimensions of the vector spaces of interest to
us, namely root fields of irreducible polynomials.



Preview of Root fields:

If f,g are relatively prime in Q[X], then they cannot have a common root in C = complex
numbers.

If f,g are relatively prime in Q[X], then they are still relatively prime over any larger field (i.e.
one containing Q).

If r is a complex root of an irreducible polynomial f in Q[X], then r cannot be a root of any
polynomial in Q[X] of degree less than deg(f).

If r is a complex number which is a root of some polynomial in Q[X], then there is a unique
monic irreducible polynomial fin Q[X] such that r is a root of f. Then Q(r) = the smallest
subfield of C containing (both Q and) r, has finite dimension over Q equal to deg(f), and the field
Q(r) is isomorphic to the modular ring Q[X]/(f). In fact 1,r, r2,.....r0-1 span (over Q) the ring
Q[r] of “polynomials in r” where n = deg(f) and they are independent over Q. Moreover this ring
Q[r] is a field, hence it equals the field Q(r). (Note that every subfield of C contains Q.)

Ifr is an element of C satisfying a monic irreducible polynomial fin Q[X], and if F is any
subfield of C containing (both Q and) r, and if the dimension of F over Q is finite and equal to n,
then deg(f) divides n.



4000/6000 Day 25  Root fields for polynomials

Consider the fields Q = the rational numbers, and C = the complex numbers. In between
these two fields are infinitely many other fields. Ifr is any complex number, there is a smallest
subfield Q(r) of C containing (Q and) r. Notice that it unnecessary to say a subfield of C contains
Q, since every field must contain 1 and 0, and all sums 1+1+1....+1 = n, and all negatives -n of
clements it contains, and all quotients of elements by non zero elements, so every subfield of C
must contain all numbers of form, n/m, where n, m are integers and m # 0, i.e. every subfield of
C must contain all rational numbers.

There are two kinds of elements of C, the algebraic elements and the transcendental elements.
An algebraic element of C is one that satisfies some non constant polynomial over Q. Thus all
elements of Q are algebraic, since if r is rational it satisfies X-r = 0, and sqrt(2) is algebraic since

it satisfies X2-2. It is hard to identify transcendental numbers, those which do not satisfy any non

constant polynomial equation over Q, but it has been proved that n and e are transcendental, as
well as numbers like

.0100100000010000000000000000000000001........ , where each 1 occurs after n! zeroes, for n =

This proof is in our book, but is less interesting than the harder proofs for x, and e, for which one
must look in a number theory book, or an honors calculus book like Spivak, used in 2400H here.

We will focus on algebraic numbers. If we forget some of the multiplicative structure, then every
field containing Q can be viewed as a vector space over Q. The main result is the following;:

Theorem: Ifris a complex number, then r is algebraic over Q if and only if the field Q(r) is
finite dimensional as a vector space over Q, and hence r is transcendental if and only if this field
is infinite dimensional over Q.

The concept of vector dimension over Q is defined in terms of the concept of linear combinations
with coefficients in Q.

The main example of vector space we want is a pair of fields E, F containing Q. Le. if E contains
F, which contains Q, then E is a vector space over F. The vector addition in E is the usual
addition in E, and the multiplication of elements of E by elements of F is the multiplication in E,
but you just forget about the multipliaction of elements of E where neither is in F. So E,
considered as a vector space over F, has a little less structure than it has as a field.

Now consider any complex number r and a subfield F of C. We want to know what the smallest
subring, and the smallest subfield of C containing r and F, look like.

Definition: The smallest subring of C containing r and the subfield F of C, is the intersection of
all subrings of C containing F and r. It is the unique subring of C which contains r and which is
contained in every other subring of C containing r and F. This ring is also called the subring of C
generated by r over F.

Lemma: The smallest subring of C containing r and the subfield F, denoted F[r], consists of the



set of all numbers of form ag + ajr + apr2 + ... +anr!l, where the coefficients aj are in F, and n >
0. ILe. it consists of all “polynomials” in r with coefficients in F.

proof: Since any ring containing F and r, contains all products and sums of things it contains,
any ring containing r and F must contain all these elements. On the other hand, since any sum
and any product of such polynomial expressions is again such a polynomial expression, this set is
closed under sums and products. Moreover this set contains additive inverses of all its elements,
hence is a ring. QED.

Definition: An element r of C is called “algebraic over (a subfield) F”, if and only if it satisfies
some non constant polynomial ag + a1 X + apX2 + .....+ap XD, over F. Le. if and only if there

exist numbers a(), a1,....,an in F, with n> 1, and ap # 0, such that ag + ajr + ar2 + ... +aprll = 0.
A complex number which is algebraic over Q is simply called an “algebraic” number.

Lemma: Two polynomials f,g in F[X] which are relatively prime in F[X], cannot have a
common root in any field containing F.

Proof: If f,g are relatively prime in F[X], there exist polynomials h,k over F such that fh + gk =
1. If r were a common root of f and g in any field containing F, then substituting X = r, would
give 0 on the left but 1 on the right. This contradiction proves the result. QED.

The following result assigns to each algebraic number over F, a special irreducible polynomial
with coefficients in F.

Proposition: If r in C is algebraic over a subfield F, then there is a unique monic irreducible
polynomial over F satisfied by r.

Proof: First we show r satisfies some irreducible monic polynomial. Sincer is algebraic, r
satisfies some non constant polynomial over F, say g(r) = 0. Since g is non constant, and F[X]
has unique factorization, we can factor g into irreducible factors, say g = f1D.....fq where all fj
are irreducible over F. Then 0 = g(r) = f](t)f2(r).....fm(r), and since C is a field, one of the
factors fj(r) must equal zero. Thus r is a root of the irreducible polynomial fi(X). Dividing by
the leading coefficient c of fj does not change this fact, so then r satisfies the monic polynomial
fi/e.

Now we show the monic irreducible polynomial satisfied by r is unique. Suppose f,g are
two different monic irreducible polynomials. then neither can divide the other since if f = gu,
then since fand g are irreducible u is a unit, hence u is a non zero element of F. But since both
f.g are monic, the leading coefficient of f, which is 1, equals u times the leading coefficent of h,
so u = 1, and hence we would have f=g. Thus if f and g are different monic irreducible
polynomials over a subfield F of C, then they are relatively prime. Then they cannot have a
common root. Thus an algebraic element r over F, is a root of exactly one monic irreducible
polynomial over F. QED.

Definition: Ifr is any element of C, the smallest subfield of C containing r and a subfield F, is
defined to be the intersection of all subfields of C containing r and F. it is the unique subfield of
C containing r and F and contained in all other subfields which contain r and F. This field is
denoted F(r) and is also called the subfield of C generated by r over F.



Theorem: Ifrin C is algebraic over a subfield F of C, then the ring F[r] is already a field, and
hence F[r] = F(r) = the smallest subfield of C containing r and F.
proof: We only need show that every number of form ag + ajr + apr2 + .....+anr! has a

multiplicative inverse of the same form, (but possibly of different “degree”). We know this
already. Le. suppose r satisfies the irreducible polynomial f over F. If g is any non zero
polynomial over F, and g(r) the corresponding element of F[r], if g(r) is not zero, then f does not
divide g. Then fand g are relatively prime, so there exist polynomials h,k over F such that fh+gk
=1. Setting X =r gives f(r) = 0, so g(r)k(r) = 1, and hence k(r) is the inverse of g(r). QED.

Lemma: Ifrin C is algebraic over a subfield F of C, and its monic irreducible polynomial f over

F has degree n >1, then the field F[r] is a vector space over F, and the elements {1, r, r2,...., r-1}
form a basis over F. In particular, F[r] has dimension n over F.

Proof: To show it spans, let g be any polynomial over F and g(r) the corresponding element of
F[r]. Then by the division algorithm,. we can find polyonmials h,k such that g = hf + k, and
deg(k) < deg(f) =n. Then

g(r) =h(n)f(r) + k(r),a nd since f(r) = 0, g(r) = k(r). Since k has degree < n, k(r) has form
a()+a1r+a2r2+....+an-1rn'l, hence g(r) is a linear combination of 1, r, r2,....,/1"1 as claimed.

To show independence, note that if {1, r, r2,...., rn'l} were dependent, there would be
coefficients c(,....,cn-1, not all zero, such that

¢ + cqr+ ¢ r2+....+cp-1 M-l = 0. Then r satisfies the non zero polynomial

g(X) = ¢ + c1 X+ ¢ X2+....+cp-1 XB-1, But since g is non zero and of lower degree than f, and

fis irreducible, then f and g are relatively prime. But we have proved then that f,g can not have
any common roots, so since r satisifes f, this is a contradiction.

QED.

Corollary: The field Q(sqrt(2)) has dimension 2 over Q, and Q(cuberoot(2)) has dimension 3.

Proof: The element sqrt(2) satisfies X2 - 2 = 0, and cuberoot(2) satisfies X3 - 2 = 0, and these
are both irreducible. QED.



4000/6000 Day 26. Dimension of algebraic field extensions
(root fields) A

The fundamental result, proved in the day 25 notes, is that the dimension of the field F[r]
obtained by adjoining an algebraic element r to a field F, equals the dergee of any irreducible
monic polynomial satisfied by r over F. We will prove this again today, and derive as a

consequence that if r = cos(200) = cos(n/9), then Q[r] has dimension 3 over Q.
The connection between polynomials and linear combinations is based on the following result.

I). The polynomial ring F[X] as a vector space over F.
If F is any field, then the polynomial ag + a1 X + apX2 + ..... +an X1 is precisely a linear
combination of the elements (1, X, X2, ....... ,XM) with coefficients ag, a1, a2, ....., ap. Since the

only way for f to be the zero, polynomial is for all coefficients aj to be zero, this says that the
elements

(1, X, X2,....... ,XM) of F[X] are independent, for every n> 0. Since for every n> 1, F[X] contains
an independent set of n elements, by problem 24, section 5.1 , there can be no finite spanning set
in F[X]. Thus F[X] is infinite dimensional over F.

Next we examine the connection between a root field and polynomials.

II). Let F be any subfield of the complex numbers C and let r be any complex number. Then the

numbers (1,r,r2,r3,....,rn) are linearly dependent over F, if and only if r satisfies some non zero
polynomial over F of degree < n.

Proof: Ifr satisfies the non zero polynomial ag + a;X + X2+ ... +apX", it means that ag +
ajr+agr2 + ... +aprlt = 0, but that some of the coefficients aj are not zero. This is exactly what
it means to say that the set (1 ,r,r2,r3,....,rn) is dependent over F. Le. conversely, if ag + ajr +
a2r2 + ... tapM = 0, is a non trivial lienar combination of the elements (1 ,r,r2,r3,....,rn) which

equals zero, then the polynomial ag + a1 X + apX2 + ..... +anXD, is non zero of degree < n, and is
satisfied by r. QED.

III). Recallifris a complex number, abd F a subfield of C, then F[r] = the smallest subring of C
containing both F and r = all complex numbers of form ag+ajr+agr2 + ... +anr® for alln > 0,
and all coefficients aj in F = span(1,r,r2,3,....... ) (an infinite sequence of powers of r).

Lemma: Ifris algebraic over F, and is a root of a non zero polynomial ag + a1 X + a2X2 +

..... +anX™, of degree n > 0, then F[r] is spanned as a vector space over F by the set of n elements

(1 ,r,rz,r3,....,rn'1). In particular F[r] has finite dimension < n over F.

Proof: This follows from the division theorem. Le. we must show any element g(r) of F[r],
where g is any polynomial over F, depends on the set (1,r,r2,r3,....,rn'1). By the division
theorem, we get g = th + k, where h,k, are in F [X] and either k = 0 or deg(k) < deg(f) = n. Then
substituting X = r, we get g(r) = f(n)h(r) + k(r) = k(r), since f(r) = 0. And since eitherk =0 or



deg(k) <n-1, k(r) = cg + cir + cor2 + ..... +ep-11-1, for some elements c¢iin F. Thus g(r)
depends on (1,r,r2,r3,....,rn'1) as claimed. QED.

IV). Ifris a complex number, F a subfield of C, and if r satisfies an irreducible polynomial f

over F of degree n > 0, then in fact n > 1 and the set (1,r,r2,r3,....,rn'1) is a basis of F[r] over F, in
particular F[r] has dimension n over F.
Proof: A non zero polynomial of degree 0 is a non zero constant, hence has no roots, so if r

satisfies f, we must have deg(f) =n > 1. By III, the set (1,r,r2,r3,....,rn'1) spans F[r], so we must
show it is independent. If it were dependent, then by II, r would satisfy a non zero polynomial g
over F of degree <n-1. But since f'is irreducible of degree n, then f and g would be relatively
prime, and we already know from last time that then they cannot have a common root .

Hence then (1 ,r,r2,r3,....,rn'1) is a basis of F[r], which thus has dimension n over F. QED.

Notation: For this reason, in field theory it is usual to call the dimension of a field extension, the
“degree” of the extension, and to write it differently. Le. if E is a field containing another field F,
then the dimension of E over F as a vector space, is called the “degree of E over F”, and is
written as [E : F] = degree (i.e. dimension) of E over F.

V). Ifr=cos(200) = cos(n/9), then Q[r] has dimension 3 over Q.
Proof: It suffices to find an irreducible polynomial of degree 3 over Q which is satisfied by r.
We use the trick of complex exponentials, which gave us the double angle formula, to give us a

triple angle formula. Le. we know that cos(/3) = cos(600) = 1/2, by looking at an equilateral
triangle, cut in half. Thus we want to express the number cos(n/3) = 1/2, as a cubic polynomial

in the number r = cos(n/9). Recall that el?/3 = cos(n/3) + 1 sin(n/3) = 1/2 +isqrt(3)/2. And also
that e(ab) = (ea)b, so since /3 = 31/9 we have el/3 = ¢l(371/9) = [ei“/ 9]3

= [cos(n/9) + i sin(n/9))3 =

cos3(w/9)+ 3cos2(n/9)i sin(m/9)+ 3cos(w/9)i2 sinZ(n/9)+ i3sin3(w/9)

= cos3(1t/9)+ 3icos2(7t/9)sin(n/9)- 3cos(1t/9)sin2(n/9)- isin3(n/9), and if we write r = cos(n/9), and
= sin(7t/9), this becomes

=13 +3ir2s - 3rs2 - is3 = (13 - 3rs2) +i(3r2s - s3)
=1/2 +1 sqrt(3)/2.
Thus we have (3 - 3r32) =1/2.

Since also r = cos(/9) and s = sin(7/9), we have r2+s2 = 1, s0 s2 = 1-r2, so substituting gives (r3
- 3r(1-r2) = (413 - 3r) = 1/2.

Thus r satisfies the equation 4X2 - 3X - (1/2) =0, or 8X3-6X-1=0.

We want to show that 8X3 - 6X - 1 is irreducible over Q, and it suffices to show it has no factors



of degree one, or equivalently no rational roots. This can be checked in a few minutes, and
involves trying the 8 possibilities X = 1, -1,1/2,-1/2,1/4, -1/4, 1/8, and -1/8. It would also
suffice to find a prime integer p such that p does not divide 8, and the reduced polynomial over
Zp has no roots. We cannot reduce mod 2 since that lowers the degree of then polynomial. Also

the test fails for p = 3, since the reduced polynomial mod 3, is -X3-1 , which does have X = -1 as

aroot. Mod p =5 however, the polynomial becomes h(X) = 3X3 - X - 1, and we only have to try
0, 1,-1, 2, -2, and none of these is a root, since they give h(0) = -1, h(1) = 1, h(-1) = -3, h(2)=1,
and h(-2) = -3. [Please check me on this. If any one of these numbers should really be zero, the
whole calculation goes down the drain and the result could be false.] QED.

VI). We also want to know how to compute the dimension of larger fields, obtained by adjoining
several new elements, such as the dimension of F[r,s] over F, where 1,s, are complex numbers,
and F a subfield of C. Unfortunately, simply knowing the dimensions of the two fields F[r] and
F[s] over F, does not always determine the dimension of F[r,s] over F. There is one acse where it
does, in an example in the book. We will prove that if the two dimensions are relatively prime,
i.e. if say [F[r]: F] = n, and [F[s] : F] = m, where n and m are relatively prime, then [F[r,s] : F] =
mn. The general result is that if F, E, K are subfields of C and E contains F , and K contains E,
then the degree of E over F, times the degree of K over E, equals the degree of K over F.

Here is an example: consider X4 - 2 over Q, an irreducible quartic polynomial. It has 4 complex

roots, 4\/5 (= the real positive 4th root of 2), - ‘4\/5 , iw , and -i% . By what we have

proved today, adjoining any one of these roots to Q gives a field of dimension 4 over Q. But
depending on which root you adjoin, you get two different fields. Le. adjoining W gives the

same field as adjoining -4\/—2- , and this field is contained in the real numbers. Thus Q[%] isa
subspace of R which is 4 dimensional over Q. This field contains only real numbers hence does

not contain the roots i% , and -ifl\/z . On the other hand, the field Q[iw] is also 4
dimensional over Q, but is not contained in R. It also contains i 2 , but not either root fl\/-i

or -4\/—2_ (which is not as obvious, except by counting dimensions).

Thus if we want to adjoin all the complex roots of X4 - 2, we can do it in two stages, first adjoin
fV_2_ , and then adjoin also i%. Now since X4 - 2 is irreducible over Q, the field Q[‘A\/E] has
dimension 4 over Q, as we said. But then over the larger field Q[% 1, X4-2isno longer

irreducible by the root factor theorem, since it has a root in the field. For instance, we can factor
it easily recalling that 2 is now a square in this field, since it is the square of (4\/5 )2 = W .
Then we get X4 - 2 = (X2)2 - (fVZ)2 =(X2- fVZ) (X2 + fVZ), and now

since also ‘A\/Z is a square, namely 4\/2 = (% )2, we also get

X4.2=(X- 4\/5)(X+ W)(XM W)intheﬁeld Q[W].



Now in this field the last quadratic, (X2 + fVZ ), s still irreducible, since it has negative
discriminant, hence no real roots.

Thus over the field Q[W ], the complex 4th root iﬁVE has degree two. We will show that the

field Q[fVE, i%] = Q[fV—Z_ ;1], has degree 8 over Q.

Lemma: IfF is a subfield of E, and E is a subfield of K, then

[K:F]=[K:E][E:F]. Infact,if (z],....,zn) is a basis of E over F, and if (W1,....,Wm) is a basis
of K over E, then the set of nm pairwise products ({ziwj}), forall 1 <i<n, 1 <j <m, is a basis
of K over F.

Proof: This is just a trivial computation, using distributivity. Anyone can learn to do it. But
since it is a little messy, I want to illustrate it first with some small numbers, i.e. sayn=[E:F]=
2,and m = [K : E] = 3, and the bases are (z1, z2) of E over F, and (w1, w2, w3) of K over E.
Then look at the set

{z1w1, z1w2, Z]w3, 2z2w1, Z2w2, Z2w3 }, we claim is a basis of K over F.

To show it spans K over F, let u be any element of K. Since (w], w2, w3) spans K over E, we
can write u=biw] + baw) + b3w3 for some bjin E.

Then since (z1, z2) spans E over F, each bj can be written in terms of (z1, z2) using coefficients
in F, say b = aj1z1 +a2]22,

b2 =a12z] +a222, and b3 =a13 z] +a23 2.

Then u =biw] +baw2 + b3w3

=(a11z1 + a2122) w1 + (a1221 +a2222) w2 + (a13 z] + a23 z2) W3.
Now we can expand this as a linear combination of the elements
{z1w1, z1w2, Z1W3, z2W1, z)W2, zZ2w3 }, with coeffificients ajjinF.
Le.

u=(a]1z] +a21z2) Wi + (a12z] +ap2zp) w2 +(a13 z1 + a23 z2) w3

= a11(Z1wD+ a21(z2w1)+ a12(z1w2)

+a22(z2w2) + a13(z1w3) + a23(z2w3). Since we have expressed an arbitrary element u of K as



a linear combination of the elements
{z1w1, z1w2, z1W3, 2z2w1, Z2w2, Z2w3 } with coefficients in F, these elements span K over F.

To see the set {z]w1, z1w2, z1W3, 2z2w], Z2w2, ZQw3 } is independent over F, assume we
have a linear combination equalling zero.

0= aj1(z1w1)+ a21(z2w1)+ a12(z1w2)
+a22(z2w2) + a13(z1w3) + ap3(z2w3).

We must show the coefficients ajj are all zero. We work backwards in comparison to what we
just did before. Le. expand as a linear combination involving of the Wi,

0= a11(z1wD+ a21(z2w1)+ a12(z1w2)

+a22(z2w2) + a13(z1w3) + a3(z2w3)

= (a11z] +a2122) w1 + (a122] + a2222) w2 + (a13 2] + a23 z2) w3.

Now observe all these new coefficients involve only a’s and z’s, so since the a’s belong to F and
the z’s belong to E, all these coefficients belong to E. Since by hypothesis, the wj are

independent over E, all these coefficients must be zero. Le.l this gives us three linear
combinations, all equal to zero.

(a11z1 +a21z2) =0,
(a12z1 +a2222) =0, and
(a13z1 +a23z2) =0.

These equations are linear combinations of the z;’s, with coefficients in F. Since the zi’s are
independent over F, each coefficient is zero, i.e. every ajj = 0, as desired. Thus in fact the set
{z1w1, z1w2, Z1w3, z2w], Z2w)2, zDw3 }, is a basis of K over F. QED.

Now we give the shorter, but possibly more opaque general proof.\

Let (z1,....., zn) be a basis of E over F, and (w1, ....., W) a basis of K over E. Then we claim
the set of pairwise products ({ziwj}), for 1 <i<n, 1 <j<m, is a basis of K over F.

spanning: Given any element u of K, it can be expressed as u = Zb ; Wj, where the bj are in E,
j

and the sum runs from j =1, to j = m.



Each bj in turn can be expressed as (*) bj = Z a; zj, where the ajj are in F, and the sum runs from

i=1,toi=n.

Then substituting the equations (*) for the bj into the first equation for u, gives us

u= Zb W)= Z(Zaﬁ; w, = z a,(z,w;), which expresses u as a linear combination of the
j FR i.j
desired products with coefficients in F.

independence:
To show independence we again work backwards, assuming that

0= Z a;@zw,) = Z (Zaijz,. )w;, which implies, by the independence of the wj over E, that for
ij J i

every j, we have the linear combination

Z a;z; = 0. Then by the independence of the zj over F, this implies for every j, that all the

coefficients ajj are zero. This does it. Le. the set ({ziwj}), for 1 <i<n, 1 <j <m, is both
linearly independent and spanning for K over F, hence it is a basis of K over F. QED.

Here is a matrix version of the proof of this theorem: Let Z be the row vector whose entries are
the numbers (z1,....,zn), and let W be the column vector whose entries are the numbers

(W1,....,wm). Then if A is an n by m matrix of entries from F, the product ZAW is exactly a sum
of form Z a;(z;w;). Hence to show the products (zjwj) span K over F, means, given an arbitrary
ij

element u in K, to find an n by m matrix A over F such that ZAW = u. Now since the w's span
K over E, there is a row vector B of length m such that BW = u. Then since the z's span E over
F, there is an n by m matrix A over F such that ZA = B. Thenu=BW = (ZA)W, as desired. To
show independence, means that if A is any n by m matrix over f such that ZAW = 0, then A = 0.
But if ZAW = 0, then (ZA)W = 0, so by independence of the w's over E, since the entries of ZA
belong to E, every entry of the row vector ZA is zero. But by independence of the z's over F,
then every column of A consists of all zeroes. QED.

I think the double summation version is easier, but I had trouble making it look easy to my class.

The following corollaries are of interest to us.

Corollary: Ifris a complex number which satisfies an irreducible polynomial over Q of degree
n, and is F is any subfield of C containing r and finite dimensional over Q, then n must divide the
dimension [F : Q].



Proof: We just showed that [F : Q] = [F : Q[r]] [Q[r] : Q], and we know that [Q[r] : Q] =n.
QED.

Corollary: Ifr,s are two elements of C, if [Q[r] : Q] =n, and if [Q[s] : Q] =m, and if n,m are
relatively prime, then [Q[r,s] : Q] = nm.

Proof: Let Q[r] be the smallest subfield of C containing r, and let (Q[r])[s] be the smallest
subfield containing the field Q[r] and the element s. Then this is the same as Q[r,s] = the
smallest subfield of C containing both r and s.

Hence the dimension of Q[r,s] over Q[r] equals the degree of the lowest degree polynomial
satisifed by s with coefficients in Q[r]. Since the irreducible polynomial of s over Q is one such
polynomial, but not necessarily of lowest possible degree, since it only allows coefficients in Q,
we learn that [Q[r,s] : Q[r] ] <[Q[s] : Q] =m. Thus [Q[r,s] : Q]

= [Qlr,s] : Q[r] ] [Qr] : Q1< [Qls] : Q] [Q[r] : Q] =nm.

On the other hand, both n and m must divide [Q[r,s] : Q]. Since n,m are relatively prime their
product also divides [Q[r,s] : Q], and then the inequality implies that [Q[r,s] : Q] = nm. QED.



4000/6000 Day 27 Calculations with field extensions

Explicit construction of fields.
We will construct all possible finite dimensional fields containing Q, i.e. all fields containing Q
and finite dimensional as vector space over Q.

Let u be a symbol, and choose a dimension for your field, say n. Then let the basis elements of

your field be given by the symbols 1,p, u2,....,un‘1. Then define the field to consist of all
expressions of form

aQ +ajp + a2u2+....+an-1 un-1 where the coefficients aj are any rational numbers. Then add
two of these as usual, i.e.

(@0 +a1p +app2+..+an 1ui-1) + (bo + by + bpp2+...+bp. pi-1)

~ (a0+b0) + (a1+b)p + (a2+b2)u2+.... +(ap-1+bp-1 -1,

If ¢ is any rational number, multiply also in the usual way, i.e.
c(ap+ajp+ a2u2+....+an_1un'1) =(cap+cajp+ ca2u2+....+can-1un'1).

So far all we have done is define the vector space structure, and we have given it the usual vector
space sructure of the rational n dimensional space Q1. Le. the element (ag+ajp+

ap u2+....+an_1p.n'1) of our field, can be thought of as corresponding to the vector of coefficients
(a0, a1, ....,an-1) which is just a point of QN

But now we want to define a multiplication on our vector space so it really becomes a field. ILe.
we have to say how to multiply two elements

(@0 +a1p +a2p2+..+an-1ut-1) and (b + by + bop2+... +by-g un-1)
of our field together and get for an answer another element like that

i.e. like (co + c1p + cop2+....4cn-1 un-1), where the ¢i are rational numbers. And all the rules for
rings and fields have to be true.

Well we start off by just multiplying as if they were polynomials, but we get terms of degree
higher than n-1 in our symbol u. E.g.ifn =3, we have

(a0 + a1p +a2p?)(bg + bip + bop2) =
a0bo+(apb1+a1bo)u +(apb2+a1b1+azbo)u2 + (ajbo+azb1)u3 +(apbo)ud.

Now we have to decide what p3 and u4 should be equal to. Le. they have to be set equal to some
expressions of degree less than or equal to 2, in p.

This can be done in many ways, by imitating the construction of a modular polynomial ring,



modded out by an irreducible polynomial.

Le. all we need is any irreducible polynomial f(X) of degree n over Q, in this case of degree 3,
such as f(X) = X3 - p, where p is a prime integer, or f(X) = X3-X-1, or f{X) = X3 + 29X2 - 58X
+ 29 (by Eisenstein), or ANY other irreducible polynomial over Q, of degree n.

Then we use this polynomial to tell us how to redefine un. Le. assume p is a root of our
polynomial, so we set our polynomial, with p substituted for X, equal to zero.

In case n = 3, and our polynomial is f(X) = X3-X-1, we set u3 -p - 1=0, which just means that

ud = p+1. Then we get p4 = p(pd) = p2+u. Thus in the expression above for a product, we
have

(a0 +a1p +agp2)(bo + by + bau2) =
agbo+(agb1+a1bp)u +(apb2+a1bi+azbg)u2 + (ajba+azby)pu3 +(agbo)p4

= agb(+(agb1+a1bo) +(agb2+a1b1+azbo)u? + (a1bo+azb1)(u+1) +(a2b2)(u+u).

Now just multiply through and simplify to get the formula for the product.

Another way to say it is to take any product A(n)B(un) = g(u), where A,B are polynomials over
Q, and reduce it mod f, i.e. divide to get g(X) = f(X)q(X) + r(X), where deg(r) < deg(f) (or r =0),
and then replace g(u) by r(u), which will have degree < n as desired.

This is a field since it has the same structure as the modular ring Q[X]/(f), which we know is a
field when f is irreducible. There is also a theorem that all finite dimensional fields, even if we
construct them by adding several elements to Q, could have been constructed instead by adding
one suitably chosen element. Hence all finite dimensional fields have the form of Q[X]/(f). (For
example, the field Q[sqrt(2), i], obtained by adjoining to Q both sqrt(2) and i, could have been
obtained by adjoining the one element sqrt(2)+i instead.)

Examples of field extensions

I. Let Q be the rational field and then X2 -2 is irreducible over Q, so if u = sqrt(2) is the positive
square root of 2, the smallest subfield Q[ ] of the complex field C, containing p has vector
dimesnion 2 over Q. In particular there is a Q - basis for Q[u] consisting of the 2 numbers 1, p.
Le. the elements of the field Q[u] are exactly the numbers of form a+bp, where a,b are rational.
(This says that 1, span Q[u] over Q.) Moreover atbu = c+dy, iffa=c,andb=d. (Iffisnota
misspelling - remember Sam’s suggestion?) (This says that 1,u are independent over Q.)

The addition of elements is easy, since (atbp) + (¢ +dp) = (a+c) + (b+d)p.

The multiplication is not hard either but you must remember that “2 = 2. Thus (atbu)(c+dp) =
ac + (ad+bc)p +bdu2 = ac + (ad+bc)u +2bd



= (ac + 2bd) +(ad+bc)u .

Division is a little harder. Recall it is done by rationalizing a denominator. ILe. since we know
(atbp)(a-bp) = a2 - b2pu2 = a2 -2b2 and this is a rational number which is only zero when a=b
=0, we get if (a+bu) # 0, then 1/(a+bp) = (a-bp)/[(a+bp)(a-bu)] = (a-bp)/(a2 -2b2) = a/(a2 -2b2)
-pb/(a2 -2b2) =

r + sp, where r = a/(a2 -2b2) and s = -b/(a2 -2b2) are rational numbers.

II. Our second example was the field Q[i] obtained by adjoining a root i of the irreducible

polynomial X2 + 1 to Q. Here i denotes the root located in the upper half of the complex plane.
Then the field Q[i] is again a 2 dimesnional vector space over Q, with basis, 1,i over Q, and
hence elements uniquely expressible as a + bi where a,b, are rational. To multiply we need only

multiply as usual and remember that i2 = -1. The multiplicative inverse of a+bi is a/(a2+b2) - i
b/(a2+b2).

IIL. If we adjoin the real root p = 2(1/5), of the irreducible polynomial
X3-2,to Qwe get a field Q[u] of dimension 5 over Q, and basis l,u,pz, u3, pd. Le. every

element can be written uniquely as a+bu+cp2+dp3+ep4 = a+b§/§ +c W +d5\/§ +e5V 16.

For inverse, if we ask for the inverse of f(r), where g is a polynomial of degree < 4, then we can
use the Euclidean algorithm to solve for polynomials h,k, such that

(X3 - 2)h(X) + g(X)k(X) = 1. Then setting X =p = w , gives the inverse of g(§\/-2-) as
k( W ).

Applying this to g(% )= 1+§/§ , Which corresponds to g(X) = X+1, I got
(X+1)(X4 - X3+X2 - X +1)-3=X5 -2, or

(X+1)(X4 - X3+X2 - X +1) - (X5 -2) = 3, s0 it seems that

(1+§/§ yl= [1-%[5+ 5\/Z -%/g +§/ 16 1/3. (Is it right? I did not check it! Check it and get

to correct me!)

IV. What if we adjoin two elements, p = sqrt(2) and i = sqrt(-1) to Q? We claim we get a vector
space of dimension 4 over Q. Le. adjoining p to Q as we saw, gives a 2 dimensional extension
Q[pn]. Then we must consider whether i is already in the field Q[u]. But since p is a real
number, all elements a+bp, with a,b, rational, of the field Q[u] are also real. So i does not belong
to this field. (If you do not believe that kind of reasoning, and want more proof, ask yourself

whether (a+bp)2 = a2+2b2 +2aby, can be -1. It cannot since all terms are non negative real



numbers.)

Since X2+1 is quadratic and has no root in Q[u], it is irreducible over Q[u]. Thus adjoining i to
Q[u] to get Q[u,1], gives a vector which is 2 dimensional over Q[u], and 1, i are a basis over
Q[u]. Thus every element of Q[p,i] can be written uniquely as (a+bp) + (c+dp)i=a+bu +ci +
dui, where a,b,c,d are rational Hence as a vector space over Q, it is spanned by 1,u,i, ui. Thus
the dimension over Q is at most 4, and it is exactly 4 if these elements are independent over Q,.
But if there is some linear relation a+bp + ¢i + d pi = 0, then

atbp = -ci-d ui = (-c-dp)i, and thus the purely real number on the left equals the “pure
imaginary” number on the right. This means both are zero, so atbu = 0, hence a=b = 0, since 1
and p are independent over Q. Thus also (c+dp)i = 0, and since C is a field and i # 0, then (c+dp)
= 0, so again by independence of 1,u, we get c=d = 0.

In fact we know that degree of field extensions is always multiplicative, so that the dimension of
Q[u,1] over Q must be 4, and hence any spanning set of 4 elements must be a basis. (It at least

contains a basis, but since all bases have exactly 4 elements it must itself be a basis.)

What about inverses in Q[1,i]? We know the inverse of elements of form a+bp, and also of
elements of form c+di, but what about more complicated elements like a+dpi, or a+bp+ci+dpi?

Well we can play around with a+dpi, say multiply by its “conjugate” and get (a+dpi)(a-dpi) =
a2 - d2u2i2 = a2 + d2p2 = a2 + 2d2, which is rational, and only zero when a = d = 0. Thus the
inverse of a+dpi is

(a—dui)/(a2 +2d2), so this was as easy as the quadratic case.

As for the inverse of a+bu+ci+dui, Ido not know the answer to this ofthand. Oh I guess I do.
In fact [ have two ways to do this one.

First way: do the two previous rationalization processes separately.

Le. given atbptcitdui, rewrite it as (a+bu)+i(ct+dp), and then the inverse is [(a+bp)-i(c+dp)]/
[(a+b|.L)2 + (c+d;,t)2]. Now all we have to do is get the p’s out of the bottom. But we can rewrite
the bottom by multiplying it out, as something like e+fy = a2+2b2 + 2abp + c2+2d2 + 2cdp

= (a2+2b2 + c2+2d2) + (2cd + 2ab)u = etfu. So the inverse of this is

(e-fu)/(e2-2f2) =
[(a2+2b2 + c2+2d2) - (2cd + 2ab)u]/[(a2+2b2+c2+2d2)2 -2(2cd +2ab)2].

Thus the inverse of a+bp+ci+dui, should be
[(a+bp)-i(c+dp)][(a2+2b2+c2+2d2)-(2¢d + 2ab)u] divided by

[(a2+2b2+¢2+2d2)2 -2(2¢d +2ab)2]. At least this has no u’s or i’s in the bottom.



Second way: We know a general method for finding inverse of fields of form Q[r] where r is
algebraic over Q, so if we could find just one element r of Q[u,i] such that Q[m,i] = Q[r], and the
irreducible polynomial satisfied by r over Q, we could use our other mehthod, with the Euclidean
algorithm to find inverses.

So let’s try r = u+i = sqrt(2) +1i. At least this is contained in Q[p,i]. So we ask whether both p
and i are contained in Q[r] = Q[u+i] = the smallest subfield of C containing p+i.

Well this field is closed under multiplication and division, addition and subtraction, so if it

contains p+i it must also contain (u+i)2 =2+ 2ui -1 =1+2ui. Since any field contains 1 and 2, it
also contains pui. Then it also contains pi(p+i) = 2i-p. Then adding p+i gives also 3i, hence i,
hence also p. So the field Q[u+i] both contains and is contained in the field Q[u,i], so they are
equal. Now since the dimension of Q[w,i] = Q[u+i] over Q is known to be 4, there must be some
irreducible polynomila of degree 4 with rational coefficients, satisfied by pu+i.

Let’s try to find it. Well (u+i)2 = 2 -1 +2pi = 1+2i, so (p+i)2 -1=2pi, so
[(u+i)2 -11/2 = pi. Now (pi)2 = -2, so {[(u+i)2 -1]/2}2 = -2. Thus p+i satisfies the polynomial
([X2-112)2=-2,ie [X2-1]2/4 +2=0.

Thus, p+i satisfies [X2 -1]2 +8=0. Since this has degree 4, and the field extension Q[p-+i] is
known to have degree 4, then p-+i cannot satisfy any polynomial of degree lower than 4. Also

any polynomial of degree 4 it satisfies must be irreducible, so this must be it. In particular [X2 -

112 +8=X4- 2X2 + 9, must be irreducible over Q, even though i don ot know how to check
that easily.

Well, I finally checked it mod 5 as follows. It reduces mod 5, to X4 +3X -1, and this has no
roots mod 5. Thus it cannot have linear factors mod 5, hence has no linear factors originally. To
show it ahs no quadratic factors originally, I showed it has no quadratic factors mod 3 as follows.

Mod 3 it reduces to X4 + X2 = X2(X2+1) where X2+1 is irreducible mod 3. Thus if it had two
irreducible quadratic factors originally, one of them would reduce to X2, and one of them to
X2+1, mod 3, so they would look like (X2+3 aX+1)(X2+3bX+9) originally, since the constant
term was 9, and one factor reduced mod 3 to 1. But multiplying out (X2+3aX+1)(X2+3bX+9)

and setting equal to X4 - 2X2 + 9, gives no possible solutions. Le. we get a+b =0, and 27a+3b =
0, so a=b =0, which does not work.

The difficulty of showing irreducibility gives us added reason to be glad we have the abstract
dimension theory to work with.

V. In example III, the field Q[ﬁ\/z ] only contained the one real root of
X5-2, but none of the 4 complex, non real, roots. If we look at the polyonmial Xx3-2, it also has

only one real root 3\/5 , so if we adjoin it, we get a real field Q[’V_i ] of dimension 3 over Q,
but in which none of the non real roots of this polynomial are found. Now the quotient of two



cube roots of 2 is a cube root of 1, and conversely, the product of a cube root of 1 and a cube root
of 2 is another cube root of 2, so the field containing all cube roots of 2, equals the field
containing one cube root of 2 and all cube roots of 1. So if p is the non real cube root of 1 with

angle 1200, i.e. p = cos(1200) + i sin(1200), then u3 =1, and p satisfies the polynomial
X2+X+1. This polynopmial is quadratic hence is irreducible over any field it does not have a

root, hence over both Q and Q[;‘\/E ]. Thus the field Q[g\/i 1] = Q[3\/§ ,u] has degree 2 over

Q[’VE ], which ahs degree 3 over Q. Thus Q[3\/§ ,i] has degree 6 over Q, and has as Q basis
the elements {1, W, W, 7 2 , uﬁ}.

I did not try to cook up inverse formulas in this field, but after much playing around think I got a

single generator for this field, namely the expected element 3\/2 +u, which seems to satisfy the
polynomial

X6-9X3-18 = 0, but i did not check this. If it does satisfy it, then the polynomial must be
irreducible, if [ was right that the element generates the whole field.

VL. If we want the smallest field containing not just one, but all 4 roots of X4 -2, it is Q[‘A\/§ il,
of degree 8 over Q, with basis

{1, 4\[5,%,%, i, ié\/z, 12\5, iﬁl\/g }. Once we adjoin the element p = W, the

polynomial X4 -2 factors as (X2+2\/§ )(X2-2\[§)

= (X2+%/§ )(X-4\/§ )(X+4\/—2- ). Thus adjoining a root of (X2+2\/§ ), such as ié\/z completes

the extension. But we could just as well have adjoined simply i, a root of X2+1, as we did.

I did not compute roots, but could so so if I knew a single generator, and the irreducible

polynomial it satisifed. I guessed that p = ‘4\/5 +i should generate, and tested it by asking

whether the five elements 1,p,u2,u3,u4 were all independent. (If they were then the polynomial
satisfied by u would have degree > 4, and since it also divides 8 it would be 8, so the element
would generate. So I wrote out the elements in terms of the basis above, and got the following
coefficient vectors

(1,0,0,0,0,0,0,0)

(0,1,0,0,1,0,0,0)

(-1,0,1,0,0,2,0,0)

(0,'37091 3'1 9033 30)

(3,0,-6,0,0,-4,0,4)

Row reducing those by Gaussian elimination, gave the matrix
(1,0,0,0,0,0,0,0)
(0,1,0,0,1,0,0,0)
(0,0,1,0,0,2,0,0)
(0,0,0,1,2,0,3,0)
(0,0,0,0,0,8,0,4)



Since all rows have a pivot, these rows are independent, so those elements 1,u, u2, u3, p4 are
independent, so the element u does have degree 8 over Q, but I did not find a degree 8
polynomial it satisfies, so still do not know how to find inverses.

VII. If we adjoin a root p of the irreducible polynomial X3-X-1, then we get a field extension of
degree 3 over Q, Q[p], with basis 1, p,n2 where p3 = p+1. Then we can multiply by just taking
elements of form a+bpu-+cp2, multiplkying them in the usual way, and when we get powers higher
than 2, just use the rule p3 = u+1, and hence p4 = 2+, to lower them back down to at most
degree 2, and write the product in terms of the basis 1,p, p2 . Since we have the irreducible
polynomial satisfied by p, namely X3-X-1, we can use Euclidean algortihm to find inverses.

Some easy ones we can find directly are as follows: since p3-p - 1=0, we get p3-p =1, s0
w(u2-1) =1, ie. p-1 = (u2-1). Since then p2(p-p-1) =1, then (u2)1 = (w12 = (u-p-hy=p -
(u2-1) = 1+p-p2.

As for (1+p)"1, we get (1-p)(1+p) = 1-p2 = -p-1, s0 -p(1-p)(1+p) = pp-l =1, s0 (1+p)"L = -p(1-
=2
1) = pe-p.

That’s all the examples we have time for now. If you are like me, these tedious
computations make me long for the simplicity of the abstract approach to the subject. But
there is no real substitute for examples, since the theory is meaningless without them.



4000/6000 Day 28, Compass and straightedge constructions

The Greeks had two favorite approaches to numbers, ratios of integers, and lengths of
geometrically constructible segments. They knew how to construct all rational numbers as
lengths, starting froma given unit length, and they knew that some constructible numbers were
not rational, such as sqrt(2), the length of the diagonal of a unit square. Thus they knew that
constructible numbers formed a larger realm than merely rational numbers but they were not sure
how much larger it was. For instance, given a cube, they could imagine another cube with twice
the volume of the first. But they did not know how to construct the edge of such a cube, given
the edge of the first, using only compass and straightedge. We will sketch how to prove this is in
fact inpossible, using our knowledge of field theory and dimension theory. They also knew how
to bisect angles, and another question they asked was whether every angle could be trisected
using only compass and straightedge. The answer to this is also no, and we will prove that too.
They asked as well whether one could “square the circle”, i.e. given a circle, whether one could
construct a square whose area was equal to that of the circle. This too is not possible, but the

proof uses calculus and would take a relatively large amount of time and effort to present, which
we do not have left.

Let us say what we mean by a “construction”, a constructible point, and a constructible real
number.

One assumes given a plane, as in geometry, and two points given in that plane. The distance
between those points is taken as a unit length. Then one admits the following constructions
“with compass and straightedge”.

1) Given any two distinct points, we assume we can construct the unique straight line passing
through both of them.

2) Given any two points, we assume one can construct the unique circle centered at the first
point, and passing through the second.

Next we define what we mean by a “constructible point”.
1) The original two points are considered constructed.

2) Given any two non parallel constructed lines, their intersection point is considered
constructed.

3) Given any constructed line and any constructed circle, their intersection points are considered
constructed.

4) Given any two constructed circles, their intersection ponts are considered constructed.

Next we define a “constructible real number”.

Given any two constructed points, the distance betwen them, measured using the distance
between the two original points as unit, is considered a constructed real numbers, as is minus it.
A real number is constructible, iff it (or its negative) is the distance between two constructible
points.



Using the previous definitions, we can prove the following facts.

Theorems:

1) Given any line and a point on or off it, we can construct the unique line perpendicular to the
given line and passing through the given point. (We must use the existence of some other
constructed points to do so.) By constructing two perpendicular lines, we can construct a line
parallel to a given line, and passing through given point.

2) Given any line and a point on it, and any constructible number d, we can lay off starting from
the given point, another point on the given line and having distance [d| from it. Le. we can lay off
on any line with a chosen origin point, every point with constructible distance from the origin.

3) Thus we can erect, starting from our original line, and its two points, a coordinate system of
two perpendicular axes, on which all constructible lengths are laid off on both axes.

Thus given any point in the plane, using 1), we can mark off on these axes its “x and y”’
coordinates, and given any two constructible x and y coordinates, we can construct the
corresponding point in the plane having these coordinates. Consequently, a point in the plane is
constructible if and only if both its x and y coordinates, with reference to our original line, and its
perpendicular, are constructible numbers.

(This follows immediately from the two previous results.)

4) The constructible numbers form a subfield K of all real numbers, i.e. they are closed under
addition and subtraction, multiplication, and division (by non zero numbers), and thus all rational
numbers are constructible. (This uses similar triangles.)

5) If aline passes through two distinct constructible points with coefficients in a subfield F of K,
then there is an equation for that line with coefficients in F.

(If the two points are (a,b), and (c,d) an equation is either x = a, if a = ¢, or (y-b)(c-a) = (x-a)(d-
b), if not.

6) If two lines have equations with coefficents in a field F, with respect to our coordinate system,
then their intersection has coordinates in F also.

(Solving two simultaneous linear equations is done, as we know from math 2500, using only the
field operations of addition, subtraction, multiplication and division, on the coefficients.)

7) If a circle has a constructible radius, and is centered at a point with constructible coordinates,
all these numbers lying in a subfield F of K, then there is an equation for the circle also having
coefficients in F.

(If the center is (a,b) and radius is r, an equation is (x-2)2 + (y—b)2 =r2.

8) If a circle and a line both have constructible coeficients lying in a subfield F of K, then their
intersection has coefficients in an extension field of degree 1 or 2 over F. The same holds for
the intersection for the intersection points of two circles with equations in F.

(For example if the line has an equation in x,y in which the coefficients of y is non zero, then we
can solve for y and substitute the resulting expression in x in place of y in the eqaution for the
circle, obtaining a quadratic equation in x for the x coordinate of the intersection points. Theny



is linear in x.)
Consequently,

9) Any point which is constructible starting from our original two points, has coefficients in a
field of degree some power of 2 over Q. Le. if p is any constructible number, then the degree of
Q[u] over Q, is some power of 2. (This follows from what we have said, using prop. 1.5)

In particular, a constructible real number cannot satisfy a polynomial which is irreducible over Q
of degree n, if n is divisible by a prime other than 2. Thus, we deduce the following important
results.

10) The real number cuberoot(2) is not constructible, nor is the real number c0s(200), since we
know each of these satisfies an irreducible polynomial of degree 3 over Q. Thus we cannot

construct the edge of a cube whose volume equals 2, nor can we construct an angle of 200, using
only compass and straightedge.

Remark: The deep result that the number n does not satisfy any polynomial with coefficients in
Q (solved by Ferdinand Lindemann, building on important prior results of Charles Hermite),
implies that we cannot square the circle.

Proofs:

1) Given any line and a point on or off it, we can construct the unique line perpendicular to the
given line and passing through the given point. (We must use the existence of some other
constructed points to do s0.) By constructing two perpendicular lines, we can construct a line
parallel to a given line, and passing through given point.

proof: Given a line and two points on it, p,q, construct the circle centered at p with radius |pq],
thus giving another point r on the other side of p, with Irp = |pq|. Then construct the circle
centered at r with radius |qr], and also the circle centered at q with radius lqr|. These two circles
intersect above and below the line at points s,t. Then the quadrilateral q,s,r,t is a thombus, so
joining the two points s,t gives a line perpendicular to the original line pq, (since the diagonals of
a thombus are perpendicular bisectors of each other).



Next given a line, two points p,q on it, and a point s off it, it cannot true that both p and q are the
unique closest point to r on the line. So the circle centeredt at s and passing through one of them,
say ¢, is not tangent to the line, but meets it twice, at q and r. Then draw the two circles, centered
at q and r, each passing through s. These two circles meet twice, at s and again at t on the other
side of the line from s. Then the quadrilateral gsrt is a thombus (all 4 sides have equal length), so
the diagonals are perpendicular, hence the line st is perpendicular to the original line pq, and
passes through s.



2) Given any line and a point on it, and any constructible number d, we can lay off starting from
the given point, another point on the given line and having distance |d| from it.

proof: Let the line be given with point p on it, and let r,s be two constructible points anywhere.
We draw a picture that covers most cases. If p =r, a circle centered at p of radius [rs| will do the
job. Ifr lies on the line with p, we can erect a perpendicular to the line and mark off rs| on that
line twice, so that we may assume neither r nor s lies on the line. Then we construct the line
through r parallel to the original line, and using a circle centered at r, with radius |rs| we construct
t on that parallel line with rs| = |rt|]. Then connecting p to r, and constructing a parallel line to pr,
passing through t, gives a line that meets our original one in a point q with [pq| = |rt| = |rs].



4) The constructible numbers form a subfield K of all real numbers, i.e. they are closed under
addition and subtraction, multiplication, and division (by non zero numbers).

Use the previous construction to add |pq| to |rs|, by laying off the distance Irs| on the line pq,
starting at q and going away from p. To subtract, go toward p-
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To multiply a by b, use similar triangles constructed from parallels. Le. given a,b, and a line with
a point on it, construct two transverse lines through the point with the distance b laid off on one,
and the the distances 1 and a on the other. Then join the points 1 and b, and construct a parallel
through the point 1+a, which hits the other line at a point at distance ab from point b.

To divide, do something similar but in the other order.
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Le. given lengths b,a, laid off consecutively, lay off on another line through the origin, the length
1, and then connect b to 1, and draw a parallel through a+b, meeting the other line at a point a
distance a/b from the point 1.

Since this is a subset of the real field, we do not need to check the commutativity, etc, all we

need is closure under the field operations, so we are done.

Here is the final result of a geometer's sketchpad construction of a line segment perpendicular to
a given line and bisecting the segment between two given points on the line.



Summary:

The main idea in 5.2 is that of a constructible real number, and that if n
is any constructible number then the extension Q[1] has degree equal to
some power of 2, over Q.

Start from 2 points in the plane and then construct all possible lines
through any two constructed points, and all possible circles with a
constructed point for center and pasing through another constructed point.
For example, from just the original 2 points, there are exactly three
possible constructions. Either the line through both points, or a circle
centered at one of the points and passing through the other point.

Then consider the intersection of any two constructed figures, i.e. any two
constructed circles, or lines, or line and circle, to be a new constructed
point.



(For example if from the two original points we construct the one possible
line, and the two possible circles, then we can intersect the line and the
two circles and get two new points on the line. If we intersect the two
circles we get two new points off the line such that Jjoining them gives a
line perpendicular to the original line.)

Then use the original two points as a unit distance, and with that unit,

one can measure the distance between any two constructed points. Then a
constructible real number is either the distance between two constructed
points, or zero, or minus the distance between two constructed points.

Theorems: 1) The set of all constructible real numbers is a field
containing Q (the rationals), and (unlike Q) also closed under taking
square roots of positive elements.

2) The full set of constructible real numbers is infinite dimensional over
Q, but if we choose any one constructible real number u, then the field

Q[u] is finite dimensional over Q, and the dimension is always a power of
2.

The reason for the field structure is that one can add or subtract by
laying off copies of a given length, and one can multiply and divide by
using parallels and similar triangles. See the notes I gave out today for
how to construct at least all rational numbers.

The reason for the dimension of Q[u] being a power of 2, when p is
constructible, is that each constreuctible point is obtained by solving two
simultaneous equations, either two linear equations, or a linear equation
and a quadratic equation, or two quadratic equations.

Now solving two linear equations involves eliminating a variable and
getting another linear equation, so the solution actually lies in the same
field as the coefficients of the equations, i.e. the "extension" has degree

1. Solving one linear and one quadratic equation involves substituting the
linear in the quadratic and getting a quadratic equation in one variable,
which can be solved at worst by taking one square root using the quadratic
formula. Thus the solution lies in a field extension of degree one or two
over the field of coefficients of the two equations.

Solving two quadratic equations should involve getting a 4th degree
equation, and thus one would think it could give an extension of degree 4.
But the special thing here is that our two equations are both equations of
circles, so they have exactly the same quadratic part, i.e. the only
quadratic terms are x*2 and y*2. So if we subtract one of them from the
other, the difference is a linear equation, and we are reduced to solving



one linear and one quadratic, as before. So again we get an extension of
degree one or 2.

Thus every step in a construction involves a field extension of degree 2.

Thus doing any finite sequence of extensions, says ( by prop 1.5, page 153, on multiplying
degrees of field extensions), that the resulting point has coordinates in a field extension of Q
whose degree is a product of 2's,

1.e. is a power of 2.



4000/6000 More compass and straightedge constructions

Assume that two triangles which have two sides of the same lengths, and with the angles between
those sides also of the same measure, in fact have all sides of the same lengths as well as all
angles. lLe. triangles are congruent if they share “SAS” or “side - angle - side”. Also triangles
are congruent by “SSS” or “side-side-side”. Le. if they have the same length sides then their
corresponding angles also have the same measures.

Theorem: a triangle with two equal sides also has equal angles opposite those sides. (This is
called an isosceles triangle.)
Proof: Look at this picture. Assume sides ac and bc are equal in length in the picture at eleft.

Then drop a segment from c that bisects segment ab. L.e. assume in the following picture that ad
equals db in length.

a

We claim triangles adc and bdc are congruent by SSS. I.e. they share a common side dc, and ac
equals bc by hypothesis, and ad equals bd by construction. So they are congruent and hence have
equal correpsonding angles. Le. the angles opposite two equal sides are equal. So the angles
opposite side dc are equal, i.e. angle a equals angle b, as claimed. QED.

Corollary: A quadrilateral with all 4 sides of equal length (thombus), has diagonals which
bisect each other and are perpendicular.

Proof: Consider the following picture.
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In thombus abced, draw the diagonal db. Then triangles abd and cbd are congruent by SSS, since
they share side bd, and the other pairs of sides are equal by hypothesis, i.e. cd equals ad, and cb
equals ab. Then angle adb equals angle cdb. Now draw the other diagonal ac. Then triangles
ade and cde are congruent by SAS, so angles aed and ced are equal. Since they add to a straight
angle, both equal 90degrees. QED.

d

b

Corollary: It is possible to construct a line perpendicular to a given line and pasing through a



given point on or off the given line, (using the existence of two points on the line).
Proof: See yesterday’s notes. QED.

Corollary: Given a line L (and two points on it) and point p off the line, one can construct a line
passing through p and parallel to L.

Proof: Construct a line M through p perpendicular to L as above. Then construct a line N
through p perpendicular to M. Then N is parallel to L. QED.

Recall the principle of “similar triangles”. If two triangles have equal angles, then any pair of
sides opposite two equal angles have lengths in the same ratio. E.g. each side of one triangle has
length equal to & times the length of the corresponding side of the other triangle.

Theorem: Given two distinct points on a line, one to use as origin and one as unit point, it is
possible to construct on that line all points at rational distance from the origin.

Proof: integer points.

To construct the point 2, make a circle centered at the unit point passing through the origin. This
circle meets the line, besides the origin, at point 2. To construct point 3, make a circle centered
at point 2 and passing through the point 1. This circle meets the line besides at point 1, also at
point 3. Continue to obtain any positive integer point, or do it in the other direction to get any
negative integer point.

points at distance 1/n from the origin.

Erect a line perpendicular to the original line, passing through the origin (erect a “y axis™). The
unit circle centered at the origin marks off a unit point on this new axis. Using this unit point
construct all points on the y axis at integer distances from the origin. Now draw the line between
the unit point on the x axis and the nth point on the y axis (as in left picture).
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Then draw a line parallel to that line, but through point 1 on y axis. It will hit the x axis at the
point at distance 1/n from the origin, by similar triangles. QED.

points at distance m/n from the origin.

Now imitate the same construction as done to find all integer points, i.e. the circle centered at
point 1/n passing through the origin, meets the x axis further at point 2/n. In this way we obtain
all points of form m/n on the x axis. Doing this for all integers m and n#0, we obtain all rational
points. QED.

Now I’ll try this with geometers sketchpad. I tried to construct the point at distance 1/5 from my
origin. But I did not like how slow it was to do all the constructions so I just guessed my unit
distances. I also did not know how to label my points as “1”, “2”, .....”5”. Anyway here it is.
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I guess I am not too good with this. This isn’t much better than what I did just with macpaint.

Now I want to remind you that you can construct more than just rational points. For example you
can construct any multiple of sqrt(2), or any number of form sqrt(2)/n, for any integer n # 0, as
follows.

Make a circle centered at the unit point on the y axis, and passing through the unit point on the x
axis, hence with radius sqrt(2). Make a line through the unit point on y axis, and parallel to the x
axis, hence meeting the previous circle at distance sqrt(2) from the unit point on y axis. Then
drop a perpendicular on the x axis from this point, hence meeting the x axis at distance sqrt(2)
from the origin. Then imitate the earlier constructions of integer distances, i.e. of laying off
copies of this given length, and also of dividing this length up into n equal parts.
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We can also construct the square root of any distance we already have, e.g. of any rational
number, or repeated square roots of any rational number, e.g. 4th root of 2 as follows.

Lemma: Any triangle formed by joining the opposite ends a,b of a diameter of a circle, to any
other point ¢ on the circle has a 90degree angle at the third point c.
Proof: (See picture below.)

a { b

\ : )
Draw a segment from c to the center of the circle at d. Then triangles adc, and bdc are isosceles,
since each has two radii for sides. Thus angles dac and dca are both equal say to X, and angles

dcb and dbc are both equal say to Y. Looking at the big triangle abc, its angles add to
180degrees, so 2X +2Y = 180. Hence X+Y equals 90degrees, but X+Y equals angle acb. QED.

Lemma: Given any right triangle abc with 90degree angle at c, if we drop a perpendicular from
vertex c to the hypotenuse, meeting it at d, then the product of the lengths ad and db equals the
square of the height cd.

Proof:
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Since angles acd and bed add to 90, as do angles acd and dac, then angle dac equals angle bed.
Hence also angles dca and dbc are equal, so the triangles adc and cdb are similar. Thus their
sides are proportional, i.e. the ratios of the lengths |ad|/|dc| and |dc}/|db] are equal. Thus |ad| |db| =

dc|2. QED.

Now let a be any given length. Then lay off length a starting from the unit point.
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Then bisect this total segment, i.e. bisect the segment from 0 to 1+a, at (1+a)/2, and draw a
semicircle centered at (1+a)/2, and with the segment as diameter. Le. the circle is centered at
(1+a)/2 and passes through the origin and through 1+a. Then erect a perpendicular to the
segment, passing through the unit point and meeting the circle at the point c, as in the picture
below.
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Now draw the segments from O to ¢, and from c to (1+a), thus forming a right triangle as below.
Then the height of this triangle (already constructed) has length equal to the square root of a, by

the previous lemma.
sqrt(a)
l: 1+a)/2

By repeating this construction we can construct a segment whose length is equal to any real




number which lies in any real field extension of Q, obtained by repeatedly making degree 2
extensions. I.e. any real degree 2 field extension is obtained by adjoining a root of an irreducible
quadratic polynomial to the given field. And by the quadratic formula, the roots of such a

polynomial are in the field extension obtained by adjoining a square root of “b2-4ac”. Since we
can construct this square root, and the constructible numbers form a field, we can also construct
the root of any degree two polynomial whose coefficients we can construct. Thus the
constructible numbers not only form a field, but a field which is closed under taking square roots.
This is a very large field, infinite dimensional over Q, but it does not contain any roots of

irreducible polynomials of any degree over Q except powers of 2. Thus cos(209) and
cuberoot(2) are not constructible.

Corollary: The ancient problems of "trisecting all angles" and of "doubling any cube" are
impossible by ruler and compass.

proof: These construction would yield algebraic numbers whose irreducible poynomials have
degree 3 over Q. But if a real number A is constructible in a finite number of steps, then A is
contained in some field extension of Q obtained by adjoining a finite number of square roots.

Such a field has degree 21 for some n over Q. But if Q[A] is contained uin a field of degree 21,

then the degree of Q[A] over Q divides 20, But if A is cubert(2) or cos(200), we know the
degree of Q[A] over Q is 3. Thus these numbers cannopt be contained in any finite field

extension of degree 21, hence they are not constructible numbers. Thus the corresponding
geometric constructions cannot be carried out. QED.

Remark: It was proved in the 19th century that & does not satisfy any polynomial in Q[X] at all,
1.e. w is not only not constructible, it is not even algebraic over Q. Hence one also cannot "square
the circle", i.e. one cannot construct by ruler and compass a square with the same area as a given

circle.

It is possible to construct regular polygons of 3,4, 6, and even 5 sides. I.e one can construct the
sin and cos of the angles 27/3, n/2, /3, and also 2nt/5. Thus one can separate the circle into 3,4 5
or 6 equal arcs. But one cannot construct an angle of 27t/7, since according to a book on my

shelf, (Herstein’s Topics in Algebra), 2cos(2n/7) satisfies the irreducible cubic equation X3+X2-
2X-1 =0. I myself have never constructed a regular pentagon that I can remember. I do not
think I learned that in high school. Can you do that? It was Gauss, 2,000 years after the Greeks,
who discovered exactly which regular polygons, i.e. which angles of form 2x/n, could be
constructed with compass and straightedge. Moireover he constructed a regular 17 - gon! a
construction described in my book as "correctly believed for centuries to be very difficult, but
incorrectly assumed to be impossible."”



