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Groups, Fields and Galoiz Theaory
{copvright 1996 bv Rov 3mith)

Wa bagin with gproups o the context in which they were utad
by Galms, the problem of existence of formulas using only algebraic
operation: and radicals, for roots of polynomial equetions. After we
introduce the language of groups, and the properties needed to
calculate with them, we will hegin studying Galois' use of them to
solve this problern. The first part of these notes ends with the proot
of Galols necessary condition for & polynomael to be solvable via
radicalz, and itz application tc show that X% - 80X + 2 = 0 in
particular is not solvable. [We use the abbreviations "¢~ = Tlor all”,
"3A" = "for sorne”, "iff" = "if and only if", and "Ll = “disjoint union” |

Group actions, and a counting principle.

51) Definition of a group, and the fundamental example Sq.

Groups represent the algebraic version of symmetry. In fact,
the fundamental example of a finite group, ¥n - the st of all
bBijections of the set {1,...0} with itzelf, iz called the “svymmetric
group”. [Recall f5=T iz a kijection iff for every v in T there iz a
unigque x in F with flx) = v] We denote the family of bijections of S
with itself as Bij(3). Note that the famuly Bi(S) of salf map:s of 8 has
nice properties reminiscent of those for sddition of integers:

i) The cornposition of two hijections of 2 iz again a hijection

i1} Aszociativity holde is. (feplieh = fo(geh) for any thres bijactions
f.eh of 3.

iii}) The identity rnep of 3, 1321, 1z & bijection, s.t. , ¥ f, fel=1ef =f
ivl % fan Byl 3 Flin BijiS) st f{x) = v iff £~ 1{y) = g;
equivalently st, fof~l=f"lof = 1

Abstracting thaze properties gives the definition of a group, 1.

Dafinition A group iz a set @, closed under a hinary operation

» GuEF— G, which iz aszpcimtive, hes an identity, snd such that svery
mlement has an inverse. We rmay write ab (and tormetimas a+b) far
b Thus (since closure has been assumed) the axioms ars:

Y% m, b e in G slbc) = [able,

ii} 3 an element e in E such that v & in G, an

aE = A,
i) ¥ ain 3, 3 a1l in & such that an~1 = w=la = »



G 15 called commutative (or abelinn) if slse, for everv e, b in G we
have abh = bm

Exarcian #1) (i) Show that in any group G, e is unigue, and that

for ench & in G, s~ ! is unique.
{ii) Show 3 is not akelian for any n : 3.

We usually write just G for the pair (G,-), although the operation is
even more impertant to the structure of the proup than 1z the set.

Dafinition: A zuberoup H of & proup &, is a subset HCE which is
closed under the aperation of G, and which iz itself a group for that
operatlon.

Reomark: The fundamental nature of the groups 5y, is revesled by
the fact, proved later, that any finite group can be embedded as a
subgroup of sorne Sy,

Exercizse #2) (i) The identity element of a subgroup HCG is the
identity of G, and inverszes of slements of H are their inverses in G,
(ii) If H is non ampty, H is & subgreup iff ¥a, b in H, a1k is in H.
{iid) If x iz any element of a group (G,-], the sat of all integral powers
{xT} of %, is mn abelian subgroup <z’ of G, where we define x1 = %, »¥
=ikt Liderr; 2 2P - e and w F = (80 forr: 1.

§2) More examples of groups:

It iz pften interesting to consider those bijections of & zat 3
which leave some important property of 3 unchanged or “invariant”.
i) "[zometries”, Isam(RD) = the subgroup of BijlPD) consisting of
those bujections which leave the Euclidean distance between pairs of
points in BN unchangad, (for axample translation by a; f{x) = a+x).
ii) The subgroup of elements of leom(F1) which lesve the origin
fixed is the "orthogonsl group” Oln) of linear isometries of RN, It can
bz thown thet O(n) = Imaps FR—RA given by multiplication by
thoze nxn matrices M such that MU = -1}
1ii) The subgroup 30{n) € n) consisting of elerments which are also
"grientation preserving (corresponding to the matrices in QO(n)
which have determinant = 1) is called the specisl rthogonal group
For example 50(2) is the group of rotations of the plane about the



origin, and 533} is the group of rotations of three space about axes
through the origin of BRI,

"wWe can oktain other, zemetimes finite, subgroups of [sem{ER}
by considering these mptions thet leauvs s parcticulse teresting
geornetric figure inwvarnant. Exampler include:

iv) the subgroup Cube of 30(3} mapping a cube centered at the
erigin into itself, or

v], wi) the subgroups Tet, lcos of 30(T) mapping & reguiar
tetrahedron or regular icosahedron centered st the origin into
themszelves.

e mmay call the groups Cube, Tet, lcos, the {oriented, or
rotation) groups of the cube, tetrahedron, and cosahedron.

vil] The subgroup Zn of rotations of & regulsr plane polygon of n
sides, centered at the oripin, about an axiz perpendicular ta the
plane of the polygon is finite cvche, of order n (see definition below).
vili) The "dihedral” group Dnc {2}, the isometry group of a polygon
of n sides, includes not only the rotations akout an axis through the
origin and perpandicular to the plans of the polygon, but also
reflections sakout an axis of symmetry contained in the plane of the
polygor  |These reflections are the restriction to the polygon of &
rotation of three space abhout the zarne axiz] Dy has Zn elements.

Challenga: Are there any more finite subgroups of S0(3), other then
subgroups of those above? DMMake a conjecture and try to coms up
with an dea for proving it

The only abelian groups among the example: akbove are the
rotatlan groups Zn of a regular plane polygeon. We make precise the
term “eyelic” which applies to these.

Definition: A group is cyclic iff it consists of the integral powers of &
single elermnent. An element whose integral powers sxhaust a cyclic
group is called a "generator” of the cyclic group.

Rermnnarks: (i) By exercize #2 every cyclic group is abelian.

{ii) For a group G written additively, an elerment « generates & iff
evary non zero element of G is expressible ms o *oc or -o- -0
(iii) The subgroup Zn of rotations of a regular plane polygon of n
sides iz cyclic, since it is generated by s counterclockwise rotation
threugh 2w/n radians.



{iv) The intepers # form an infinite cyclic group under addition,
with 1 and -1 az (the only) generators.

(v} If x is any element of & group G, the subgroup <x» gensrated by
»", consisting of all integral powers {xf} of %, iz cyelic. Both x and
x~1 are peneratars and there may be others (see the next exercise).

Exarcise #3) {1} Prove an winfinite cvclic group hes exactly twa
EEneretors

{il) Prove the generators of a finite eyelic group <x> of order n:1, are
exactly those elsments of form xK where 0 < k < n and ged{k,n) = 1.
{iii} Prove the set Zp = 10, 1, 2, .., k-1l is & cvclic group under the
following addition irw: given 5, t in dn, s+ t = the rernainder after
dividing the uzual integer tum £+ £ by n. (For example in I5, 2+2 =
1+3 = 4, and 2+4 = 3+3 = 1}

{iv) Prove the set Zn* = {integers k with 1 ¢+ k ¢ n and gedik,n) = 1}
15 an abehan group with the following multiplication: given 5, & in
Int, let st = the remainder aftar dividing the usual integer product

st by n. (For example in Zg* = {1357), 3.9 =7, 3.7 =9, 3.3 = 1)

Mher examples of proups are eazy to coanstruet from the ones
we know using the fundamental product construction.
Definition: If 8, H are any two groups, their “product” is the group
whose underlying set 15 the Cartezian praduct 3=H = {all ardered
pairz (g h) where g is in G, h 15 10 H, and with the operation

(g.h)-(g.h) = (gg.hh).

FRemark: The product TTG] = Gix.. =Gpn, of & finite sequence of groups
G1. .Gpn. 13 defined analogously as the Cartesian preduct with the
Eroup operation agsin defined “pointwise’.

Exerciss 4] (i) If G H are groups. check that G=H iz a group

{ii) If G1,...8n are abelian groups, show their product TTG] is abelian;
in particalar & product of eyehe groups 25 iz abelian.

{iii) Prove Z2x23 iz cyclic but Z2x 22 iz nat.

{iv) Analyze some other examples of form ZpxZ2y, and make a

con jecturs ax bto precisely when such products are cyclic.
{v) Prove your conjecture frorm part (iv),

Remark: Eventuslly we will prove & strong converse Lo exercise



4(ii} tor fimite proups, that every finite abelisn group has the samd
structurs s a product of cyclic groups T2, Thus if we were only
interested in finite akbelian groups, our investigation would ba over.
Understanding non akelian finite groups iz more challsnging, and

thers iz no comparakly simple wawv to classifv all of them, sven
though they do all eccur as subgroups of the symraetric groups Sn.

“We naturally want to know something sbout the structure of
groups we encounter, and the sirnplest guestion we can ask s for
the "order’ or nurnber of elernents of & group 3. 5o how do we count
the number #{3) of elerments of a (finka) proup G? The cyclic group
Zn has n elements, and the order of the product TTG; 15 the product
of the orders of the G, Dut how do we compute the order of the
geornetric syrninetry groups above”? Claarly the nurmber of
elermnents of the proup of the cube should have something to do with
the nurnber of faces or vertices of & cube, and presumasably the fact
that the cube has rapre faces than the tetrahadron may be reflected
in the group C being larger than the group T. This is not entirely
clear, but we can make the connection rmore precise via the concept
of & proup sction”, 8 fundamental tool for analyzing finite groups.

$3) Action of a group on & ast: A group G acts on the set S {(from
the laft) 1f 3 & mep G=3=+3, where the image of (g s) is written gis)
(er gz or <g.s*). such that e(s} = 5, and g{hi{s)) = {ghi{s), for all 5, g, h.
This means: thet, in our notetion, gh acts on an element s by h
mcting first on s and than g acting on hiz). [Be careful to note in
each bhook vou read whether this is the convention or whether
instead they assurne (gh)s) = hig(z]), which means that g acts first
and then h. That Jatter convention should perhaps be written
(ei{gh) = ((sdghh, with the action on the right, and iz often used in
connection with the standard notation for permutations] An action
1g called “transitive” iff for every pair of elements g, t in 3 there is
some g n G with gl{s)st In general, the "orbit” of an element s of 3
i the subset of thosa slernents t of 2 such that there does exist some
E IR G with gls) = ¢

U0 every action is transitive on each orhit, and a transitive
actlon on 2 1s one such that for every element 3 of 2, the orbit of = is
3 itself. In general, the zet 5 13 partitionsad into disjoint subksets by
the family of orbitz. The following counting principle relates the size
of an orbit of a G actian to the size of G, and since G acts transitively



on each orbit, it iz sufficient to state it for the case of transitive
actionz. The idea i3 to show that for any two pozszible destinations
tor & grren point, there are the same number of group aléarnants
taking it to one destination as there are taking it to the other.
Hence the number of elements in the group 1x the product of the
nurnber of possible destinations of a given point, times the number
of group element: that leave it where it iz

Firzst we distinguizh those elemnents that leave n given point fided,
Definition: (i) 1f G acts on 5 and ¥ iz an slsment of T, the stabiliger
subproup”’ or "isotropy subgroup” of » is the subgroup Gu <G of
elernents that leave x fixed, ie f in G belongs to Gy iff fle) = x.

{ii) The "orkit" of x, dencted O(x}, is the set of images of ¥ under all
elernents of G, O{x) = {all points in 5 of form f(x) for some f in G}

The following principle 1z absolutely fundamental:

Lemrma (a counting principle): If & acts on 2, then for any
elernent x of 3, the nurnber of elermnents of G is the product of the
number of elermnents of O] and the number of slerments of Gy, i &
#(G) = *(Gy)*#{0(x)), where Gy = the stabilizer subgroup of x. and
Olx) = the arkit of x under G.

preof: Since the stetement oniy invelues the action of G an the arhit
Qix), we mey as well azsurns that Olx) = 3, ie. that the action i3
transitive. First we partition the group G sccording to how elernents
affect x. le setting f~p 1iff fix) = plx) defines an egquivalence
relation on G, hence a partition of G = U g Gy 5 into disjeint subzets
or “equivalence classes” Gy s = {f in G f{x) = s}, for each s in 3. Next
we show these ¢laszes are all the same size. {Note thet Gy x = Gx.}

Claim: For all 5, b in &, #{Gy s =#{dy ).

proof af elmirm: We will define mutually inverse bijectiorns betwaen
the two subsets. Since the action iz transzitive, there is an element g
of G such that gls) = t. Then Gy v > gy s, since if has in Gy g, then
(gh)(x) = gfhix)} = gls) = t. On the sther hand. since g~ 1{t) = 5
[*hy?], the same argument shows that g~ lﬁxrt < Gy ¢ Thus the
twe maps Gy g~ Gy t. G t— Gy s, given rezpectively by left
multiplication by g and by g1, are mutuslly inverse, hence both
mre hijections, ancd so #(Gy 2) =w(3y ). QED clairm.

Consequently, the partition 3 = Ly Gy g, of G iz by disjoint subzets,



all of the same cardinality, hence #{3] = #(3#(dy o) for any
elerment 3 of 3 If we choose 5 = x then Uy » = Gy, hence our
counting principle holds QED lamma.

Nota: If hix) = 5. and glx) = %x. then (hglx) = 5, and n fact {the set
of all products of form hg with g n Gxl = hGx = Gx s but there iz ne
reasen for (ghl{x] ta agual £, 5o we do not expest Gyh to equal hGy,.
Thus the "right translete” of 8 subgroup Gy by an element h, does

not necessarily egual the left translate of that subgroup by h.

Corollary: Whenever a finite group @ scts on & set, the order of
every stabilizer subgroup. and also the order of every orkit, divides
the order of G.

Now 1t 15 erzy ta caunt the elernents of the groups Cubke, Tet,
lcos of rotations leaving invariant the classical reguler solids:
Application: We have #{Cube) = 24
proof. The group Cube acts on the set of fmces of the cube, and the
rotations that leave say the tap face invariant, are precisely the
four rotations of the top face through a rmultiple of 900 (Note the
axit af the rotation must be perpendicular to the top face) Since
there are 6 faces and the stabilizer group of the top face haz 4
elements, the counting principle above implies #({Cube) = 4x0 = 24.
|Alternetively, Cube scts on the set of B vartices, with stahilizer
subgroups of arder 3, and on the set of 12 sdge: with stabilizer
subgroups of order 2] QED,

Exerciae #5) (i) Check that the rotation group Tet of the
tetrahedron consists of 12 elements, and the rotation group Icos of
the wcosahedron conziziz af 60 elernentz. What ars the order: of tha
rotation groups of the actahedron and the dodecahedron? wWhy?

{ii} Show the dihedral group Dy of all symmetries {containing both
ratations and reflection: in axes: of syrarnatry) of & réegular plane
palygon with i & 3 sides has order 2rn, and i3 ot abeling.

(iii) If p is counterclockwize rotation through 1209, and R iz

E

reflection in an axis of symmetry of an equilateral triangle, show
that D3I consists of the slaments {id,p,pE,R,pR,pER}, and Rp = pER.
{iv) Vake o similar analyziz of Dg.

(v} Make & con)scture for D generalizing parts (i}, (iv).



Tarmainclogy: A subset of A group G is sad to "generate” the group
1ff every elernent of G can be written as a product of integral powers
of those elarnents. Thur a group is cyche iff 1t can be generated hy
one elermnent. From ex. 5, the group D3 15 not abelisn hence oot
cyclic, but can be pansrated by two alaments Cap you find
generators of sorne of the cther groups above, such as Cube, Tet, or
lcos? Hon trivial sgquations involving generstors, such as Rp = FER
for '3 1in ex S(iii) above, are called "relations” {among the
gerierators) Note a subset 3 of G generates G iff ne proper subgroup
of G contains 5 We agree that the empty set generates the trivial
Eroup 1=l

Remark: There ars rnany interesting ways a group can act on
various sets, in particular on itzelf, and thus the counting principle
above 1z extremely useful 1n practice, az we will sees

§4) Cosetas of a 3ubgroup, and Lalrange's theorem

The eounting principle inveolving the action of a group Gon a
st T van be made more intrinzie, in that we can dispenss with the
set 3, a3 follows. Notice that f |, g are elements of a group G acting
on a set 3, and x it a pant of 3, then { and g ares equivalent in the
sense that Kx) = glu}, 1fif F7lgix) = x, iff f1g belongs to Gx. Thus to
dafine the sguivalence relation, wrnd sssentially the action of G on the
arbit Q{x), we only need the stabilizer subgroup Ge. [ in some
sense Gy represents the element x. Firnilarly the subset Gy o of
elernents of G taking x to 5. can ke used to represent the element s.

As noted in the previous section, if hix) = s, and glx) = x, then
(hgMx} = 2, and in fact {the set of all products of form hg with g in
Gyt = Ry = Gy x, %0 the left translate h3x of Gx by h, can be used in
place af Gy ; to represent the elernent s of O{x). Note that hGx = Gy 5
if and only if h belongs to Gx g, and hig = kGy if and only if h=1k
belongs to Gy, We develop this point of view next, without
rnentioning 2

The following termineclogy for transiates of subgrovps is standard;

Definition: [f HCG iz a subgroup and x in @ 15 any element, the set
®*H = {xh: for all h in H} of left translates, i e left rmultiples, by x of
elements of H, 15 called & (l=ft) coset of H in @ Similarhye, we define



the right coset Hx = [kx: for ell h in H}.

Action on cosets of a subgroup by translation:

Define a (left) action of G on the set 3 of all subszets of G, by left
translation le for every element g of G, and every subset T of G let
gT be the set pf (l=ft) translates of T, whare gT = [gt. far all & in T}
This is an action since g(kT) = (gk)T by assaciativity of muluplication.
Let H be any subgroup of G aend let J be the orbit of the subset H
under this action. Then 3 15 the set of sll left cosets of Hin G, and G
acts transitively on these cosets by left tranzlation.

Eeraark: Similarly the orbit of H under right translation is the set
of right cosets of H, but wa prefar left cozatz and laft actions, whose
notation sgrees with that for composition of functions 1n calculus.

Lemmae: [f HCG is & subgroup, g, k in G, then

(i) gH = H if and only if g belongs to H; mors gansrally
{ii) gH = kH iff g belongs to kH, iff g~1k belongs to H.
{iii) two cosets gH and kH are sithar sgqual oF dizjoint,

Exercise #6) Frove the previous lemma,

Corcllary: If HCG 12 & subgroup, then:

{i) the stabilizer subproup of the caset eH = H iz H jtzelf,

(ii) the subzet of G taking H te gH, is the subset gH itself,
proof: (i), {ii) follow frormm (i), {ii) in the lemrma above. QED.

Moral: A subgroup R of a group 4 15 always a stabilizer subgroup for
sarne action, ie. H1s the stabilizer subgroup of itself for the action of
G by left translation on the set & of subsets of 3 Thus the
apparently geometric notions of group mctions and stabilizer
subgroups are present within the algsbraic structures of a group and
1tz subgroups.

Faor the actionn of a group by translation, on cosets of & given
subgroup, the counting principle has a5 famous name;
Ladrange's Theorem: If H 1s any subgroup of 3, then »(G) =
#*(H)# (distinct left cosats of H), In particular #(H) divides # (&)
proct For the action of lsft translation, H = 84, sand the orbit of H is

the set of distinct cozets of H, zo this follows from the counting
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principle abopwe. QED.

Terminplogv: The number of distinet left cosets of H in G, 15 called
the “index” of H in G. {It alse equals the number of right cosets.)
It iz denoted [GH|. Thus [GH]| = #{G)/*{H}.

Exarcize #7) (i) Prove every subgroup of a cvche group is cyclic.
(i) FProve that every group of pritna order iz cyclic.

(iii}) Prove that every abelian group of arder b is eyelic.

{iv) Prove every abelian group of order pg where p, o are distinct
primes i3 cvelic

Now we make precize the idea that all graup actionz are
equivalent Lo tranzlation of cosets of subgroups. If GxS=3 iz any
(left) action of G on & set 3, and if ¢ 53— 7T is a bijection of sets, we get
an equivalent (left) action of G on T by defining G=T—T as follows:
glt) = ¢lgle 1)) The following problem shows how to replace any
set 5 acted on by G, with a set T of cosets of a subgroup of G.

Challenge: Now let Gx5— 5 be anv transitive acticn, and choose &
point p of 3. If 3 1= the set of all suksets of G define g 53— 2 by plg) =
ig-glpl = gl € G and let TC.3 be the image of the map .

{i}) With notation as above, shaw that T i3 precisely the set of left
cosets of the stabilizer subgraup Gg, and theat =T is a bijection
{ii} With notation as aboue, show that the action @xT=—T induced by
the action Gx2— 3 and the bijection ¢, is left tranzlation of cossts.

§5) Hememorphisms: & way to compare groups

Angther way to view the action of a group on a s=t 15 to view
each elarnéent of the group as a permutation of the elements of the
zet. Thus, when the group of the cube acts on its six faces, each
rotation of the cube can be considered axs giving & permutstion of
the six facez. Thuz we have a function Cube— 35, which presarves
composition’, ie for any two rotations F, g of the cube, if we write f,
g. for the associated permutations of the set af faces of the cube,
then (f=g) = f+ g

Jince two rotations of the cube are equal |ff they permute the
faces in the same way, the map Cube = 56 15 injective, hanee ernbeds

the group Cube inside the parmutation group 3¢. [Recall 12T is
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injective ar "1-1" iff far all .9 in 5, » = v iraplies flx} = fly)] We
can also view the group of the cube as a permutation group on the B
vertices, or on the 12 edges, obtaining ernbeddings of Cube inside the
groups =g, and 5132,

It is maore informativve howsver to map Cubs into & srosller
group of perrnutations, xo we consider its action on the set of 4
diagonals of the cuke. This gives a composition - preserving map
inta the group 34, which also has order 24. [t is possible then that
Cube maps bjectively onto this group. Indeed this 15 s0. In fact,
suppaze a ratation of the cube maps sach of the 4 dimgonals into
itself Then each vertex maps either to itself or to the disgonally
opposite vertay. [f aven gne vertex maps to itzelf, then & glancs At a
picture of a cube shawzs that the three vertices adjacent to that one
must also rermain fixed. But then the three faces adjacent to that
vertex are also fizxed, and hence 20 ig the entire cube.

Thus the only possible rmaps leaving all 4 disgonals invariant
are the identity map and the antipodal map taking each vertex to
1t3 diaponal cpposite. But the antipodal map iz not & rotation (the
axiz of rotation would have to be perpendirular to all four disgonals).
Thus the gnly rotation acting as the identity parmutation of the
four diagonals iz the identity rotation.

We claim it then follows that no two distinct rotation: sct alike
as permutations of the diagonals. For if §, g act the same on all

disgonals, then f~lg would act as the identity permutation, and then
by what we have seen, f'ig would be the identity rotation, and so f
= g Thus in fact the map Cube— 354, which lats m rotatinon be
regarded ax a parrputation of the 4 diagonalr, 1z an embedding of
Cuke into the group 34.

Sinca Cuke and 24 kboth hawve Z4 elements, the embedding
Cube—+34 ix a bijection, and since in both groups the group
operatian is carnposition, which iz preserved by this map, we can
regard the group Cube as structurally the same as 84

The most fundameantal concept in ail of algebra.
Abstracting this construction visldz the concept of

“hiesrnsmoerphism”

Definition: Lat G H be two groups, and {G—H s map. Then f s

called a (group) homormorphism from G to H iff | “preserves the
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group operations . ie iff Ya b in 8, we have flab) = Ha)fh), where
on the left side the product of & and b is taken in G, and on the right
gide the product of fla) and f{h) s teken in H.

Just as stabilizer groups, 1&. those slernents which act as the
ientity on A given slerment, are crucial o understanding group
actigns, o the sets of elements which map to the dentity element

are crucial to understanding homomorphtsms:
Defimition: [f £ G—H iz a hornornorphisrn, the subsat G 2 kar(f) =

{x in G: Fix} = = in H}. is called the kernel of £

The following gensra] results are ysed constantly:

Lamma: If fG—H iz & homomorphism, then

i} fle) = e, 3o that e is in ker{f}.

ii) For every % in G, flx™1) = f{x)"1, and

iii) FG—H is injective 1ff ker(f) = {a}

procf: Nate f{e) = flee] = He)fle), 5o by multiplying by fle)~ 1 gives
f{e} = &, [where of course the e in fle) is the identity in G and the e
on the right side aof the sguation is the identity in H). Thus = belongs
te ker(f) Since e = el = fxx~ 1) = fx)fix~1), we see f{x~ 1) is the
inverse of f(x}, ie fx~1) = f(x)=L, If f is injective, ker{f) consists of
only ane alement, so ker{f] = {e}. Conversely if ker(f) = {a} and f{x) =
), than Mx 1y = fix) " 1#(y) = fledfle™1 = & 50 k™ 1y is in ker{f).
aimce ker(f) = {=}, thar x"iy = e and ¥ - vy, 30 f iz injective QED.

Advica: Practice until you can do this type of proof in yvour sleep

Dafinition: A group homemoerpkieam fG—H iz called & (group)
izornorphismn iff there iz a group homomorphism k'H—G which is
inwverse to f, 1e such that fk = 14, and kf = 13,

[f thera iz an 1zomorphlsm from G to H we write G = H, read "3 is
izemerrhic to H'. [zarnerphism iz an equivelence reistion

The next problern contains some useful criteria for
lsomorphisms. Recall that & function F3=T is injective iff for every
v in T there iz at most one » in 5 with Kx) = v, that f is gurjective
itff for every ¥ in T there is at least one x in 3 with fix) = v, and f is
Bliective iff f 1z both injective and surjective.
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Exerciae #8)

(1) A homomoerphisrn f£E—H 15 an isomocphism iff f 15 bijective.

(1i) A surysctive hornormarphizen £ is an izomorphism iff ker(f] = {a}.
{1ii) If G, H are finite graups of the sarae order, then &
hornornorphisrn £G— H is an iscmorphizm off ker(f) = (e},

Definition: If {3—H iz a hormomorphisrn, and KCG, LCH are
subgroups, the subset HJ{{K) = {y 1a H zuch that v = [x) for some =

in K}, is called the "image of K under f° The subset G267 1L = {x in
G such that f(x) iz in L}, iz called the "inverse image (or preimage) of
L under f' Obzerve ker(f) = f1{{a}}. We also write Imif) for fiG).

Exerciza 9] If f3—H is a hemomeorphism, and K6, LCH are
subgroups, then (K) is & subgroup of H, and £*1(L) is a subgroup of G.

Definition: A group izarmnorphism F3— G from a group 8 to itself, iz
called an "auiomorphizm”.

Exarcisa w10} Show that for any group G, the set Aut(G) of all
automorphisms: of G is & subgroup of Bij{G).

The next problern zhaws that giving o ((eft) action of G on & sat
3 is equivalent to giving a hamamorphizm G— Bij(S),
Exarciss #11) (i) If y .3+ Bij(3) iz o homomarphism, show that
setting <g.5* = {plghis) for g in G, = in 5, defines an action of Gon 3
{ii) Conversely, given a {laft) action of G on 5, show that for zach g
in 3, the function pl{g) definad by (plgli(=) = g5, gives a wel
defined hamomarpkism ¢ G=Bij(S).
{iii) What happens in (1) if you have a right action?

Exarcias w12} (i) If D3 iz the full symmetry group of & regular
{equilateral) triangle A, shew D3 & 83 by letting D3 mct on the
vertices of &,

(i) Show that the full symmetry group of a tetrahedron is
isornorphic to 54,

(#ii) Show every infinite cyclic group is isomorphic to 2.

(iv} Show a cyche group of order n 15 isornorphic ta 2.

(v) Bhow Aut{Z;) & {Zn*.-), the group defined in ex. 3{iv).
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8] Normal subgroups, and the action of "conjugation”

“We have seen that the kernel of a homomerphizrm iz uszeful in
analvzing & homomorphizm Wext we will study kernels, and learn
that not every subgroup of a group can be the kernel of a
homomorphizm. Those which can, the "normal’ subgroups, wers
singled out already by Gaiois and play an important raole in the
theory of equations.

Let fG—+H be o homomorphism with kernel KCG, and consider
tha right and laft trensietes, or "cozets” of K by an elament x in G.
MNote that f f{x) = v, then xK consiztz of all elernents mapped to v by
F. e Hxk) = x)Kk) = ve = v, for any k in K. Conversely if fig) = v
= Hx) than Hx"1lg) = & mz we saw hefore, so x'ig = k for sorne k in
K. mnd thus g = xk, belongs to xK. However, since f{kx) = f{kiflx} =
ey = ¥ also, we ses by the same argurment that Kx also consists of
those elaments g in G 2. Hg) = v In particular, K = Kx. Thus the
right coset of K by x iz the same az the left cozet of K by x,
something which did not vazually happen for cozets of the stabilizer
subproups Gy we met esrlier In exarmining group actions.

Suppose Ge is the subgroup of Cuke leaving the top face = of the

cube invariant, and that x is the 900 clockwise rotation about the
mxis passing through the centers of the front and back faces, and
hence leavimg those faces tnvaritant. Then for every g in Gg, xg
carries the top face to the right face, hence the laft coset xGg
consists aof elements carrving the top face to the right fece. Howewver
the product in the apposite order gx carries the top face to the right
face only if ¢ m Gg is the identity element, Otherwise, x carries the
top face to the right face and then g rotates the right fece to one of
Lhe ather three faces adjacent to the top face, In particular, the
two cosets %Gy and Ggx are not the sarne. [Check that Gex consists of
those rotetions carrying the left face to the top face

Definition: A subgroup H of & group G is called “normal” (normal in
G, far this concept 1z a relative one), iff for every x in G the two
cosets #H and Hx consist of the sama alaments.

FEemarks: {i) We have shown above that the karnal of a
hamarnarphism 6= H is alwayz a norrmal subgroup of 6.
{it) Every subgroup of an abealian group 3 is normal in G

(i1} A subgroup H € G is normal in G iff for every x in G, xHx"1 = H.
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The last remeark sbove leads Lo 8 very important concept:
Definition: (i) 1f G i3 a group and x any elament, the rmapping
E.G—G definmd by Hg) = xgn”i, 15 called "conjugation” by =®.

(1) If H is & subproup of G and % any element, the subset xHx"1 of
elements of form xyx~1 for all v in H, is said to ke "conjugate’ to H.

Exercize #13) (1) For every » 10 a group G, prove that conjugeation
by x defines a group automorphism of @, and the map G— Aut(G)
taking x to conjuegation by x is & harmornorphism.

(i} If H iz a subgroup of G and x is eny sldment, prove xHx~1 iz mlso
a subgroup of G

(11i) Prove the relation H = K iff H 12 conjugate to K, iz an
equivalence relation on the set of subgroups of G

{iv) Prove = subgroup HCG is normal iff for all x in G, xHx"1cH.

Dafinition: If H 1z a subgroup of G, itz "conjugacy class” 1z the set of
subgroups of G to which H is conjugata

Remark: The oparation of canjugation thus gives a uz#ful way o
measure how far a subproup is from being nermal. e H iz normal
iff its conjugacy class consists of only one elermnent, H itself; the
larper the conjugpasy clas:, the farthar tha subgroaup is fram being
norrmal.

The action on subpgroups by conjugation: Since norrnality iz =0
fundamental a notion, conjugation is one of the most insightful ways
to define an action of 3@ on subsets of itself. For instance, @ acts on
itz zet of subgroups kv conjugation. Thus if Z 15 the set of subgroups
of G, the action i the map Gx 5= 3 where (g H) goes to g(H) = gHg‘l.
(This defines & left actinn. For s right action sand (g H) ta g~ 1Hg)
Since xyHixy)™1 = x{yHy 1ix"1 snd eHe"l = H, @ acts by
cornjugation on the set of itz subgroups, and the orbit of a subgroup
H iz its conjugacy class.

Dafinition: If G acts on its subgroups by conjugation, then for any
zubgroup H of G, the stabilizer subgroup of H for conjugation iz called

the normalizer of 1, and denoted N(H), Thus MIH) = {xin & - xHx"1 =
H} H iz thus a normal subgraup of H(H). Indeed N(H] iz by definition
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the iargest subgroup of 8 in which H iz normal

The fundamsantal conjugation formula.
The counting principle, for a group G acting on its subgroups by
conjugation, takes the following form: tor any subgroup H of G,
#{3) = e(N(H)#(conjugacy class of H).
The phrase usually memorized i5: "the order of the conjugacy
clays is the index of the normalizger (for any subpgroup).

The action on elements by conjugation: G alse acts on itzelf by
conjugation, 1e. define GxE— & by sanding (x,vy) to xyx~1l The
stehilizer group of v for thiz action iz the set of all x which commute
with v, W{y) = {x: xwx™l = v} = {x: yx = xy}. We call this group the
normealizer of v, (also called the “centralizer” of v). Az above:

*{G) = *(N{x))w{conjugacy claszs of x), for any = in §;

1e. the order of the conjugacy clasx of x = the index of the
normalizer of x.

Dafinitien: The zubzat of those elernents of § which commute with
ull other sloments is called the ceanter of G and denoted Z(G). Thus
Z2(@) = ithose x in G such that xv = vx, for all v in G},

Definition: The product x:,r:-t‘ly'l iz called the commuteator of ¥ and

v. The set of all commutators in &, {xyx~ 1y 1, for all x,¥, in G} is
called the commutator subgroup of G, and dencted |GGl

Remark: Twao elaments x, v cornrnute with each other if and only if
their cornmutator equals e, the identity of G

Dafinition: A subproup H of G such that ¢{H) = H for all
autornorphisms ¢ of G, iz called & characteristic subgroup of G

Exercise #14) (i) Prove Z{(3) is m normal subpgroup of @

{1i} Prove that if a subgroup H of G such that ¢{H) ¢ H for all
mutornerphizsms ¢ of G iz a characteristic subgroup of G

{iii) Prove that [G,G] is & cheracteristic subgroup of G.

{iv) Prove that every characteristic subpgroup is a normal subgroup.

The "Class Egquaticn™: Any group sction on a set J decornposes 3
into disjeint orbits, hence yields mn equetion for the order of S az a
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surn of the orders of the orbits. 3Since the order of the orbit of x 1z
the ndex of the stabilizer subgroup of %, the terms in the surn ares
factors of the order of G, by LaGrangs. In the example of G acting on
itself by conjugation, #{G) hence equals a surn of indices of
normalizers of elerments of G, This is the glaz: sgquation:

wid) = Ly ind{N{x}), where x rangs: aver a zet of representatives
for the distinct conjugacy classes in G

Mote that an element x iz in Z(8) iff itz orbit under conjugation
containsg just one point, ¥ itself, equivalently, iff index(Mix)) = 1,
Thus if we sum birst nver elements of the center, we get:

w (@A) = #{Z(A)) « Ty ind{Nlix)),
where ¥ rangsas over a sat of raprezentatives for those conjugecy
classes in G containing more than one element, ie. for which MNix) is
a proper subgroup of G

Usaful remark. In a non abelian group &, the normalizer of any
elernent iz always strictly larger than the center, since for = in Z(G).
Nix) = 3, and for x not in 2(8), N{x) contains both x and Z(3).

Application to "p groups™: The following 13 & tvpical. and uszeful,
application of the clas: squation to groaups of ardaer pfl

Lernmna: A p -~ group has non trivial center; mare precisely, if (G)
= pht for n ¢ 1, and p iz prime, then #{Z(G]) is divisible by p.

proof: This follows immediately from the class equation in the
second forrn abkove »(5) = e (Z{GE)) + 24 ind{IN{x]}, where the terrms
i the zurn are indices of proper suhgrﬁups of G, henice all are
divisible by p. Since the l=ft hand side iz alsa divisible by p, 5o is
#(Z(G)). Since e belongs to Z(G), #(2(G6)) » 0, =0 #{2(E)) : p>» 1. QED,

Corallary: Every group 3 of order pe is abelian.

proof. By the lemma and the "useful remark” above, if G were not
abelian, then for every alement x, M{x) = G. But Nix) = G iff x
cornrmutes with everything, if x 13 1n the center! Since every
elernent liex 1n the center, 3 iz ebelisn QED.

Exercize #13) If p 15 a primes integer, proves any group of arder pz
1% isormnorphic either to the cyclic group Zp2 or to ZpxZp.
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Examplax of normal, and of non normal, subgroups.
Fxmmples of nen normal subgroups corme from stabilizer

subgroups of many non trivial actions by the fallowing.

Lemma: Lat & group G act on a set 3, and let x, ¥ be two points in

the zame orbit. Then the stabilizer subgroups Gy and Gy are

conjugete in G. In fact the set of all stabilizer subgroups of a given

prhit form e conjupacy class of subgroups of G.

proot: Choose [ in G such that fx) = v. Then for evervy g in Gy,

(Fgf~ 13} = (FgMu) = flx) = v, so (FgF 1) belongs teo 3y, Thus

(f Gui"1) © Gy, Zimilarly (- 1G¢f) € Gy Conjugating this last
inclusien by § pruss Gy C0F G4 1), whence Gy = (f Gxf~1). Now let H
he any subgroup of G conjugate to @y, ie H=f Gef~1, for some fin
G, mnd let ¥ = f#{x}. Then by the same srgument, f Gxf~1 = Gy. QED.

Eemerks There is no claim in the Lernma that distinct elements of
an arbit have distinct stabilizer subgroups, and in fact they may all
have the sarmne stabilizer subgroup. In some common axamples the
stabiizer subgroups are all equal to {e}, for examples in the action of
the group of translations on the plane, or the group of rotations on
the circle. More generally, since all subgroups of an sbelian group
are normal, if an mbelian group acts transitively on a set 3, then all
elerments of § have the same stabilizar subgroup.

=ince a subgroup iz normal iff its conjugacy clas:s cansists of one
alarment we have the following resualt

Corollary: If a group acts transitively on a set S, then sithdr dvery
point of 3 has the same stabilizer subproup, ar nane of the stakilizcer
subgroups is normal.

Exampla: For the action of Cube = 34 on the faces of the cube,
suery nen trivial rotation leaving the top face invariant fails to
leave the frant [aca invariant, hence the three (4 slernent) stabilizer
subgroups of the fmces are non narmal in Cuke. Further, since the
two non trivial rotations m Cube leaving & particular vertex of the
cube hxed, do not fix either of the thres adjacent vertices, the four
(3 elernent] stabilizer subgroups of the vertices are not normal
eithar. The six (2 elerment) stabilizer subgroups of the edga:z are
sirnilarly non normal. Hence, although Cube heas plapty af
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subgroups, normal suberoups are somewhat scarce.

we can produce a norrnal subgroup howdwver, by representing
Cuke inside a still smaller permutation group. Consider the action of
Cube on the three rmutually perpendicular axes passing through the
centers of opposite pairs of faces of the cube. This action, by an
earlier exercise, vields & hormomorphism Cube— 53, which cannot be
injective since #(33) = 6 ¢ #({Cube) = 24. Moreover the action is
transitive, 5o the homomorphism iz non trivial, hence has a kernel
which iz a proper nermal subgroup of Cube.

In fact a glance at a cube shows that the axes can be
permuted in at least 4 ways by the rotations of the cube, 50 the
harnarporphism Cube— 27 is surjective, and the kernel hasz order 4
Sa Cube canitaing at least one normal subgroup of order 4. [n fact,
the subgroup A of Cube of order 12, consisting of the B rotations
which each fix a pair of diagonally cpposite veartices, plus the three
1809 ratations, each akout one of the axes passing through s pair of
appozite Fases, plus the identity, 15 a normal subgroup of Cube too.
Do vou zee how to reprezent it as a kernel of a homomorphism?

Alternatively, if yvau check 4 iz m subgroup, normality follows from
the next exercize.

Exercize #16; (i) A subgroup of index 2 in a finite proup is norrmal.
{ii) Tha subsetz Gxle) and {e}«H are normal subgroups of GxH.

{iii) [f f3—H iz & homomorphism and LCH is a normal subgroup,
then the subgroup f-1{L)C G is also normal.

{iv) If fEG—H iz & homomorphisrm and KCG is a normal subgroup, is
f{K)<H always normal? Prove, or find a counteraxample.

{v) lf p is the smallest prime factor of #(G), prove any subgroup of
index p is norrnal.

Dafinition: An element x of G has grder 1 1f there are exactly n
distinct elernents of @ mmong the powers of x: e = xQ xl x& x3
If finite, the order iz the smallest positive integer n such that x = e

Definition: A non trivial group G iz called gimple if the only normal
subgroups are {a} and G, [We do not consider {e} a simple group)

Exercize #17) (i) Frove an abelian group is simple if and only if it
haz primne order.
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{ii) Prove a product of two non triviel groups is never simple.

{11} Prove if G iz simaple, &8 non constant hornarnerphism fG—H iz
alwavs injective,

{iv) If @ is simple, F.G—H iz & hornornorphism, and LCH 15 & normal
subgroup such ehat fix} 12 1n L for some x 2 e, then f{G) © L.

Exampla: Tha icozxahadral group iz zimpla.

Thiz 13 surprisingly easy. wWe will show that if a normal
subgroup of [cos contains a non trivial element which leaves Fixad
cne vertex, then it contains every elernent leaving fixed any vartex,
and sunilarly for the slermeant: leaving fived a face, or an edge. This
forces & non trivial normel subgroup to be o large 1t must equal
Ices.

Jo conzider the elements of lcos which leave fixed some vertex.
There are 12 veartices of an icosahedron, =ach surrcunded by 5
trimngles, 3o each vertex is left fixed by & group of rotaticns of order
2. Each such proup of rotations hixes just two opposite vertices, so
there are & such pgroups of ardar 5 in lcox, containing all elernents
which [ix some vertex Since distinct groups of prime order cannot
intersect except in the identity, this accounts for 24 slements of Icos
of crder 5

Zimilarly, there are 20 triangular faces, left fixed in peirs by
10 subgroups, each of order three, accounting for 20 elements of
order three in leos Dixing zome faca. The elaments fiving sorne one of
the 30 edges comprise 15 subgraupz, each of srder 2, piving 15
elements of order two., This gives 24+20+15 = 39 elements of lcos,
arnd the identity makes 6D eglements. Moreover, since the rotations
i loos act transitively on vartices, faces, and edges of the
icssmbedron, the b stabilizer subgroups of the 12 vertices are
conjugate, ax are the 10 groups of the 20 faces and the 15 groups of
the 30 edges.

Now suppeoss s normal subgroup N of [cos cantained one of the
elements of order 5. [t would then contain all 5 of itz powears, hence
the whele stabilizer subgroup containing it. But since N is closed
under conjugatinn, N would alsa contain all alarnants carjugate to
mlements of that subgroup, 121t would contain all the groups
conjugsts to that subgroup sz well The sarne holds for the elements
of orders 3 and 2

Hence anvy non trivial normal subgroup N of [coz must contain,
in addition to the wentity all 24 alernents of arder § or nons of
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thernn, all 20 alarments of arder 3 or none, and all 15 elementz of
ardar £ ar none. Thuz # (M) equals 1 plus some of the numbers 15,
20, 24 Since »(N] divides 60 by LaGrange's thecrem, the only
possibility is #(N} = 1 + 15 + 20 + 24 = 60, (since no other surn of
these numbers 1z & factar of 60). Thus Igos is fimple.

Exarcize #18) Find the class equation explicitly for the group Ioos.

Famark: Since [cos haz no proper normal subgroups, thars ars ne
ron teiviel homomorphisrms dafinaed an feas) avery harmarmarphism
Flcos—H iz sither constant, ar an embedding. In particular [cos
cannot act non tnivially on any set of fewer than 3 elements.

Remark: & deep theorem due to Feit and Thempson says that a
suniple group of odd order must have prime ordar, zo all "interesting”
simple proups have even order. The next interesting one after Icos
has order 1GB, and wes studied by Felix Klein as the subgroup of
thoze |inear transformations of the complex projective plane which
carry the curve with egustion xﬁy + }.IEE + 29y = 0 in homogeneous
coordinates, into itself. We will ook at this interesting group later.

§7) Normal subgroups ars kernels of homomorphisms into
appropriate “guotisnt groupa’

We show next how to recaver a surjective hornornorphismm
from: its kernel. The key iz te look At gosats of the kernml, The ides
1z that the kernel tells vou which elerments go to the identity, and its
casets tell you which slaments go to other things, Thus the cosets of
ker(f) in G give & substitute for the image of {G=H. More precizely:

Lemma: If fG—+H iz a hamoamarphizsm with kernel K G, the cosets of
K mre exactly the equivalence classes of the squivelerces relation:
a-b iff f{n} = Kb} In other words, b belongs to aK iff fik) = fla).
proct: [f b belongs to aK, then b = ak for sorme k in K. Then f{h) =
flak) = Ha)i{k) = ale = Ha). Canverszaly, if fla) = f{b), then = =
He)"1ffb) = e 1b), so a"1h = k for some k in K. Left-rnultiplying
thiz last eguation by & shows that b = ak belongs to al QED.

AS B conseguancs we can reconstruct a version of f_ns follows:
I=t G/K denote the set of left cosets of K in G, and define £: G— G/K by
setting f{a) = wK Then f . like f, has the property that fla) = Eb) iff
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b belongs to ak, iff 8~ 1k belangs to K. Thus to some extent, foism
reconstruction of f. Put f was a homomorphism and { is only &
function to & set of cosets. But we can remedy thiz, too! wWa can
define a natural group operation on G/K so that, like f, fism
homomorphism.

Ta defins an oparation an /K we rauzt decide how to define
the product of two coset:s akK, bK. The most cbvious thing 12 to trv to
set {aK)b¥) = (eb)E. le. the product of two cosets should be the
cosst containing the product of twa reprezsentative elements, one
from each coset. But the problern, which is e subtle ocne, is which
representatives to choose?

It 15 wrong to think that when we write s we e some wWay
of recognizing & in tha cosat aK. Put aK simply rmeans the coset
containing &, and if K # {e), it contains other things as well. [e 1f aK
= cK, and bK = dE, how do we know (ab)K = cdK? The only wey our
definition of multiphcation rmakes sanse, iz if the product is the same
for every choice of representative elements of aK and bK.

Lemma: Whan K iz norrmal, for avery a b in G and svery k1 k2 m K
the product skibk? belongs to the same coset of K as doe=s ab

proof: We rnust show that (ab) liak{bkz} iz in K. This is where we
use that K iz normal in @ The normality of K tells us that bE = Kh,
mnd hepce there iz some k3 in K such that k1b = bk3. Then we sre

reduced to showing thet (ab) 1{ak1bkz) = {ab)~1{abk3kz) =
(ab)~l{abi(k3k2] = k3kz belongs to K, which is clear GED.

Since s cozet 17 8 collection of elermnents, you might reason that the
correct definition of the product of twe cosets is be to taks thae
collection of all products, one factor from one coset, one factor trorm
the other cotet Then we would need to know thet thoze products do
form & cozet. Check this s true, 1.e. prove the following:

Lemma: If ¥ is normal in @, then for any two cosets X, 7 of K, the
zet of pairwise products xy, with % in ¥, and v in Y (in that srderl),
form:= & single coset of K.

Exercise #19) If K iz & normal subgroup of G,

(i) prove G/K iz a group with identity elerment eK = K, mnd s 1K is
the mversze of al{;

{ii) prove the map G—=G/K, taking & to 4K is & surjective
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hormomeorphisrn with kernel K
{iii) If G is abelian, prove G/K is also abelian.
{iv) If G is cyclie, prove G/K is also cyclic.

Terrainoclogy: The group G/K is called the "guotient group of G
modulo K, or sithply "G mod K

To what extent have we achieved our goal of recoverning a
homeomerphism fG—H from its kernel K7 Essentially, K determines
by the quotient construction, a group G/K isomorphic to the image
subgroup Im(f) € H, and a hermoerasrphism G— G K which iz
"equivalent to {', in the sense that there is an isomorphism @/K =
Imif) such that the composition G— G/K 2 lendi) CH, equals £ But
we get no information at all frerm K about the part af H pat
contained in Im(f], whizh iz not too surprising. How could we learn
anything from f mbout the part of H not “touched” by 7

To surn up, we prove next a theorem giving the basic facts
about guotient groups. The first property balaw ix tha kay to
defining hemomerphisms on quotient groups without struggling with
the curnbersome fact that the actusl elementz of G/K are cosets.
This is the "universal property” of quotient groups, and should be
meastered to deal with them efficizntly.

Theorem: (kasic properties of guotient groups:, and homama)
1} How teo dafins & hornomorphism G/K—H: It ¥ 1z normal in 4,
any homomorphism EG—=H such that #{K) = {e}, determines a unique
homomorphisrm £ G/K—~H such that for every a in G f (aK) = f{a).

2) When ix a homomorphism injective?

A homomorphism £G2H is 1-1 iff ker(f) = {=}.

3) When is the homomorphism G/K—H induced by [G-->H an
isomorphism?

If the homomorphism FG—H iz ants, and K = kar(f), then the unigue
mag F.G K — H. deterrmined by { 1z an 1zomorphism.

4) What is the rolation beatween subgroups of @ and
subgrioups of A/KT?

If & homamarphism 3= H is onto, and K = ker(f), there iz a 1-1,
incluswon preserving, correspondence between {subproups of H) and
{subgroups of G containing K} set up by the map H>M~f 1{M)}Ca.

5) How are rapsatsd quotient groups related?

[f HK are narmal sukgroups of G and KCHCG, then E is norrmal in H,
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H/K is narmal in G/K, and 6/H = (G/K)/(H/K).

&) Whon it the product ef two subgroups a subgroup?

If H¥ are subgroups of G and K is normal, then the sat of pairwisze
products HK = (hk h in H and k in Kl ©€G is a subgroup, (HNK)CH iz =
norrhal subgroup of H, and H/(HNK) & (HK)/K.

preof of 1) Uniqueness js clear since f is specified on every
element of 8/K by the rule f (all) = f{a). The question is whether f
1z well defined {independent of choice of representative a for akKl, and
whether 1t 15 & homomeoerphisrm. The main point 13 well definedness.
So assume that KE) = {e], and let al = BK. To show our definition is
independent of choice of coset repreazantative we nesd to show that
fla); = (I3}, But zince aK = BK iff a_lh belongs to K, we =k that .
by = fla)"1ik) = e, za F{a} = Hb). That f iz & hornormorphism follows
emsily, since f (aKbK) = f{abK) = f{ab) = f{aK) f (bK). QED for 1).

procf of 2): Since a homornorphism {:G— H always satisfies fle) = e,
if fiz 1-1 then ker{f} = {e}. Conversely, if ker(f) = {e} and f(a) = Kb),
then f(a"1k) = fa) 1fk] = &, 50 a~1b balongs to ker(f) = {s}. Thus
a"lb = @ whencea = band f iz 1-1. QED 2).

proof of 3): Since K = ker{f) is normal and H{K} = {¢). the
homomarphusm f is well dafined. 1f fimn) = x, then f (aK) = x alss,
hence if f is onto so 15 f . Since f (ak) = e iff fla) = e, iff m ix 1n ker{f)
= K, we see thet ker( ) = {K}. Since K is the idsntity slsrmsnt of
G/K, part Z) shows that [ is also 1-1 hence an isomorphism. QED 3).

proof of 4): It 1z = trivial {but useful) general fact that for any set
rmap FS—=T the invarse image map T2M — 1{M)CS on subsats

praserves inchasions (and intersections and unions). It is easy to
check if 15 a hornomarphisen, it also preserves subgroups. Since

avery subgroup MCT contains e, £ 1{M) always contains £ 1(e) = K.
To show the claimed 1-1 correspondence, work the next exercise.

Exarciss #20) The correspondence G2N2>HK = f(INJCH iz inverse to
tha correspondence in part 4) of the Thrm. above, is. (7 1(M)) = M
for all M, and fI{KN)) = N, whenever N contains K. QED 4}.

procf of 5): This is the interesting one, since it illustrates the value
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of the innocent sounding propertw 1). [.e. when the chjects at hand
are horribly complicated such as the slements: of (G/E) (H/K), which
are cosets of subgroups whose elements themselves are cozets, 1t iz
very helpful to have a clean way te guarante= that you have a
homomorphizm without actually dealing with the nature of the
elernents of the super quetiant group. o look at property 1) clossly.

Neotice that the property guarantesing a homomorphizm an
G/K is stated entirely in terms of G and KC 3 You never mention
cogets nar actually deal with G'K. So at lesast you pat rid of one level
af abytreaction. In the current setting where we have n sort of
“double cosets”, it means we will only have to deal with single cosets
at worzt., Le we will have to deasl with slements of G7H and G7H, but
not with elements of (G/K)/(H/K).

Wwe will use part 1) to define a homomorphism
F{E/KY(H/K)— G/H, and part 3) to check it is an isomorphism. (To
convince yvourself of the wvalue of part 1), just try proving this result
with vour bare hands. Ewven the notation is & problem.)

First note that zinee K iz norrnal in G, ¥ iz »nlzo normal in H [Why?].

We will check soon that H/K is normal in G/K. The natural
hamamarphism {5—G/H, where fia) = saH, has kernel H, from a
previaus axaercize. Since KCH, we zee that KE) = le], so there is by 1)
8 unigue astaciated hornernorphizm | G/K—+G/H, where f (aK) = fla)
= aH.

We claim the kernel of this homormoerphism is 'K = {hK: h iz in
H}. Since the identity slerment of G/H is H, aK is in ker(f ) iff f (aK}) =
H. But f {(ak) = aH, 50 aK is in ker{f } iff aH = H, iff & is in H, iff aK is
in H/K. Thus H/K = ker (f ), hence B/K is & normal subgroup, and
part 3) shows the induced map [ : {G/KV/{H/KI—=G6/H is an
isornarphism. QED 5).

prock of 6): Here is the acid test of whethar vou have grazpad the
uze of theze methods.

Exarcise #Z21) Prove part 6 in a similar way. Is first show HK iz &
subgroup, and ¥ iz normal in it. Then consider the homomorphisrm
defined by inclusion HCHK. Compoza this with the canonical map
HE— (HE} K o get & homomorphism H=(HK)/K, and check that this
last map 15 surjective with kernel HMK. QEDL for theoram.

Exsrciza #2Z} (i) If x is any element of & group G there 15 & unigua
homormorphism (22— G teking 1 ta x.
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(ii) If (Z.+) iz the integers, and nZC ¥ the subgroup of multiples of n,
prove Z/n¥ = Iy = 2y, the cyclic group of order o,

{iii) If a divides n, prove £, has 8 unique subgroup K of order s,
namely K = ker{f], where fIn—Tn is defined by f(x) = ax.

{iv) If a divides n, prove Zn/afn = Za.

Terminology: Twa elernentz: of @ which represent the sarme element
af the queotient group G/K are called "equivelent mod K" {ntagars
A, ¥ representing the sarne elernent in Fpr are said to be "congruent
mod 7, written x = yw{imod r), or x = w(r).

58) 2vlow's Theorems;

Just ez we study polythedra by their faces, edges, vertices, we
aralyze groups by their subgroups. We want to know what the
arders of the subgroups are and which subgroup: are conjugate to
which others, in particular which ones are narmeal. OF courze if we
have ar action of cur group on a polyhedron, then = knowledge of
the faces, edges, and vertices of the polvhedron transiates into
information on the corresponding stabilizer subgroups of the group
mrad their con Jugacy clesses, as we have seen.

Conwverzely a knowledpe of the subgroups and conjugacy classes
1n & glven group gives us information on the possible actions of the
Eroup, since each group acts by translation and canjugasy on it
own subgroups. Hence for an abstract group which does not corme to
us with a given action, to analyvze it we need to know sornething
mbout its subgroups and thelr conjupacy clascas

The fundemental results on the existence and conjugacy of
subgroups of arbitrary group: are the three Svlow theorems (which
we state together below). Eesosll that LaGrange's theorem gives us a
necessary condition for the existence of a subgroup: the order of the
subgroup must be a factor of the order of the group. This conditien
is not sutficient for existence of & subgroup - a group rneed ot have
a subgroup corcesponding to every factor of its order. Sylow's
theorem =ays & group does have subgroups corresponding to every

prime povwer factor of its order.

Exercise #23) We know the ratation group Tet has order 12.
{i} Find subgroups of Tet whose orders carraspond ta mll but one of
the factors of 12

{ii) Prove thare is no subgroup of Tet of that ona missing order.
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Tarminology: A group of arder p? where p 15 prirme and s > 0, 1=
called m "p-group”. A subgroup of G of order p¥ i3 called a "p-

subgroup” of G, and a subgroup of & of order p® such that p%*1 does
net divide #(3) iz called & "Zvlow” (or maximal) p-subgroup of G,

Thearsm (3yvlow):

1) 1f G iz & finite proup, p & primms sumbers, ¢ @ 0 an intepsy, and if
pt divides #{G) then G has & subgroup of order pt,

2) If 5% 12 the meximal power of the prime p dividing #{3), then the
subgroups of G of order p® (the Sylow p-subgroups) form a single
conjUgacy class

3} The number of Syvilow p-subgroups of S has form { * np, for some
rn : I and divides their common index (w({G)/p®), where p® 15 the
rrmaximel power of p that divides #(G).

Preoof: [This iz an expandsd version of the proof in Lang's Algebra}
Fecall the order of an element x is the smallest positive power

of x that equals the identity, ie ordix) = k, iff & + 0, xE = &, and =% 2

e whenever 0 5 < k. In particular = 15 the only element of arder 1.

Uselul remark: If ¥ 5 ord{x) nnd %% = e, then k divides t.
[Why? because any t can be divided by k and written as t = nk + m,
where 0t ¢ k. Then xt = xREtTO = DK I - o0 gy =y 2 g
sinice ™ < k, unless rm = 0, ie unlese k dividas t avanly. In
particular, if ord{x) = k, and =¥ is many power of %, then {(xNk = xTk -
(xE)F = &f = @ Thus ord{x?) divides ord(x) |

Note also that if p is prime, then & group hes an element of
arder p if and only if it has a subgroup of ordar p. [Why?]

proof of Svylew 1) "We prove this result in easy stages, far
pragrazzively more general powers r and groups G.

Case (i) @ is ¢yclic and r =1.

proof: [ & we azsume @ i5 cyclic, p divides #(&) = n, and want to
prove there iz e subgroup H of srder p. Since G iz cyclic, there iz an
elernent ¥ in G with G = (x> = the subgroup consisting of powers of x.
Then «T = e, but ne smaller positive power of x equals e. Since p

divides n, say n = pm, consider the element v = 211 Then yP =
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®MP = xN = 2 30 ord{v) divides p. Hence ord(y) iz aither 1 or p. But
if ordiy) = 1, thapn & = v = xM, apd » would have order dividing m,
where m ¢ i, & contradiction to ordi{x) = n. So v = X! generates a
subgroup < of order p. QED.

Case (ii): 4 iz abelian, and r = 1.

procf: If G is abelian and p divides #{8) we want to find a subgroup,
equivalently en element, of order p. "We use induction on #(G). We
are ok if #{@) - p, 50 assume the result for all abelian groups whose
arder it less than #{3). Now let x # & be anv non trivial element of
G and dencte itz order by ard{z) = n. If p divides n, we ares dons,
sirice then by case (i) the cyclic subproup (& contans an slement
and thus a subgroup of order p, which are alse contalned n @

S0 massume p does not divide n, and consider the guotient group
G/<x:. This group is defined and iz abelian, because G is ebehan,
hence all itz subgroups are normal, and all its quotient groups are
abelian (why?). Since by LaGrange’s theoram ®{E) = #{E/ cus)-#{cxs),
and p doss not divide #(x), p must divide »{3/¢<x3), and by the
inductive hypothesiz there iz an element v of order p in G/ <.

Now consider the natural surjective homomorphism £G—+ G/ x>,
and choose an element z of G such that 2] = v, If 2 has order s,
then & = 2% and hence e = fle) = (2% = (f{=2))8 = »& 20 ardiy) = p
divides s, by the useful remark ahouve RBow we are done by the
cyclic case applied to <2}, ie the cyelic subgroup <2 has order
divizible by p, hence contain: an alarmnent w of ordar p, which also
belongs to @ QED,

Next wa prove Zvlow 1) by induction:
Since Sylow 1) heolds for groups of order p, we may assurne it js trua

for all groups of order less than #{G), and we suppose pt divides # (G).
Thers mre two possibilities which we thall call cassz (i) snd {iv).

Caze [iii) Assume p divides «{Z{3)),

Since the center Z2(G} 15 abelian, by the previous cazs thers s
an slement x in Z{3) having order p. Then <x» is a normal subgroup
of G of order p, and we can caonzider the quetient group G/<x>. Since
#{3) = p-e{G/ex3), and pt divides #(G), then pr~1 divides #{G/<x3).
Hence by the inductive hypothesis, there iz a subgroup L of G oxe

with ®{L} = pr-1 New if a surjestive hormormorphism F5—M has
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kernel f1l{e) = K, then for every elernent y in M, f~1(v) is & coset of
K.

Herce for every v in M, I~ 1{yv) contains the same nummber of
elerments a3 K, and thus every element of M has the sarme number
of preimages in G, ln particular, for the natural surjection
EG—G ny, sines the kearnel of this map is <x> and #{<x3?) = p, it
iollows that every slement of G/<x> has exactly p preimagss in G

Thus the inverse image H = i- WL} of the subgroup L consists of
exactly p-#({L) = p-pf~1 = pF elements QED.

Caze (iv): Assume p doas not divide #(Z2{d)). Now we nead ths
class equation: #(3) = #(2{(3)) + L+#{G/N{x)), where the indices

#(G/ Nk i the surn are all greater than one. Since p divides #(G)
but p does not divide #(Z(3)), then at least one of the terms
w(G/MN(x)) in the sum iz net divisible by p. la there iz sarne
subproup Ni®) such that p dos: aot divide itz indax #(G8/N(x)).

Since #(G) = #(G/M{x))-#{N(x}), and p¥ divides #{G) but p does
not divide #(G/M(x)), it follows that pf divides #({Nix)). Moreover,
since the indices #(G/N{x)) occurring in the class equation are all
greater than one, then #(HMix)) < #{&). Hence by the inductive

hypothesis Nix) contains a subgroup of order pf, which is then also a
subgroup of @ QED for Sviow 1)

Before proving parts 23 and 3}, it iz instructive to present a
gereral fixed point principle which will be used in the proafs. Recwll
the basic fact that the index of a subgroup of 2 group always divides
the crder of the group.

Proposition: (i} Suppose a p - group P acts oo & finite set & such
that p does not divide #(3). Then there is at least one fixed point for
the actior, is there iz & some point * in 3 =och that ¥{x} = x far
every ¥ in P

{ii) More generally, for any finite set 3 acted on by a p —group P,
*#(2) = #{fixed points of the action} + np, for some integer n.

Freoof: Since the distinct P - orbits give a disjoint decomposition of
A, the zize of B iz the surmn of the sizes of the various orkits. Since
*(A) is not divisible by p, it follows that p cannat divide the order of
avery arbit. The basic counting principle savs that for sach = in 8,
the zize of the orhit of x equals the index of the stabihzer subgroup
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of x in P,

Jinee the index of & subgroup iz alway: a factor of the order of
the group, aach of theza indices iz & power of p, and hence the zize of
each orbit is a power of p. Since the only power of p not divisible by
pis pU = 1, there rnust be sorne orbit of size 1, 18 there is same
fixed point, proving part (i), Since in any cate, aach orhit either has
size divisible by B, or is a one - point orbit cantaining & zingle fived
point, #{3) is a surn of raultiples of p. plus the nurnhber of fixed
paints, which proves part (i), QED.

preof af ylow 2): Now we aszsume the hypotheses of part 2) of
Sylow's theorem, that p% is the maximal paower af p dividing (&),
that F and O are sukgroups of G of order p*, and we want to prove
F and Q are conjugate. The trick iz to let & be the zet of all
subgroups of G which are conjugate to Q. and try ta show P is in the
set & We will do this by letting P act on & by conjugation, applying
the previous proposition to show there iz a fized point, and then
phserving that the fixed "point” must be P itzelf.

First we check ona of the hypotheses of the fixed - point proposition.
Claim: #({3) is not diviaible by p

proct: Recall #(4) = indexg (N(Q)). Since Q € N(Q), and p%* = #{Q),
it follows that p“ divides the order of N(Q). But then p cannnt
divide the index of N(Q}. le since Q C N(Q) C G, and w(G) = p%n, tha
ordacs of these subgroups are of form p%, p%d. pode, where de - n.
Then mdexg (NIQY) = {(p*ni/{(p®d) = e, and since n iz not divisible by
P bv hvpothens, neither iz o QED.

How we let P act on & by conjugation. That ig, if R iz some
elerment of 3 hence a subgroup which is conjugate to Q, we act an R
by conjugating it by elements from P In this way we will gat some
of the subgroups in 3 which are conjugate to R, but probably not all
of them But zince any subgroup which is P - conjugate o B 13 also
G - conjugate to it, P deoez act on the zet &

Then by the fixed point proposition, there 1s some fixed point
for the action. le there iz at leaszt one subgroup R in 4 which iz left
fixed under conjugation by every element of F. We cleim this
elermnment of & iz F itzalf. Note that P leeves R fixed by conjugation if
and snly if P C NiR). Hence sur result follows from the next lermnma.
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Lemma: If P, B are p-Sylow subgroups of G such thet P C N(R), ie.
such that xF = Ex for every x i1 F, then F = K.

proof: We know from the proof of exercisse #21, that if P € N{R),
then PR iz a subgroup of 3, R is normal in FR, and (FR)YR =
P/(PNR), frorn which it follews that #[(PR)/R] = #[B/{PnR) iz a
divizor of #{P), hence a power of p. Jince #(PR) = #{{PRVR|-# (R},
thus #({PR) iz also & power of p, hence FR is » p - subgroup of G. But
P and R are both contained in PR, and P and R are both maximal p
= subgroups of 6. Hence P = PR = R. QED.

Since for any p - Svlew subgroups P and Q, the conjugacy class of O
contains P, all p - Sylow subgroups are conjugates. QED Sylow 2).

procf of 3yvlow 3): This iz a corollary of the hxed point proposition
and the argument for part 2}, e if 8 = the class of all Sylew p -
subgroups of G, and we let one of them, say P, act onn & by
conjugation, then by the fixed point proposition #(2) = #(fixed
peintst + rap, for some m : 0. But by the previcous lemnma the only
fised point iz P, so #lfixed pointy) = 1, and wid) = 1 + mp, for some
m : 0. QED Sylow 3), (after proving the next exsrcisza).

Exarcize w24} (i) Prove the rest of 3yvlow 3, that tha number of
Sylow pesubgroups divides the indax of any one of them.

(i) Use the group action technigque ta reprave Svlow 1) as follows: if
#(3) = pT'm where p% divides m but pt*! does not divide m, let 2 be
the set of all subsets of G of order p?, and let G act on 4 by left
translation. Prove p%*1 does not divide #{2) and deduce that soms
orbit of the action is not divisible by p®*1 sither. [Hint #{4} iz =
certain binormial comfficient] Hence thes jtabilizar subgroup of this
arkit 15 divisible by pl'. Prove this stabilizer subgroup 17 not all of G
and deduca by industion that it contains & subproup of order pt.
{Thiz proof 12 zaid to be due to H. Wielandt )

(i1} Use a different action to reprove Sylaw 2) as follows: let P, Q be
Swlow p-tubgroups, and let 8 be the set of all laft cosets of O Let F
act on 4 by left transiation and prove there iz a fixed point. ie =&
cozat xQ such that (Fx}) = P{xQ) = xQ, Deduce that Px = x{}, and
then prove that P and Q are conjupate.
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Applying Sylow to finding normal subgroups:

Orne way to show a proup 15 not simple 15 te find 8 non canstant
homomorphisrm te & sraaller group. Then the kernel is & non trivial
norrnal subproup. We know that an action of Gon & zet S of n
elernents is equivalent to a homomorphism of @ into Sy =
Biji{1,2, .n}), wheare #5, = nl = n(ln-1)n-2)X M2M1). Thus if we
can find a transitive action of G on & zet of n : 2 slements where
#{G) > nl, then the homomorphism G= 3p is non trivial but nat
injective, hence G is not a simple group.

We know for example that if H 1= any subgroup of G, then @
acts transitively by translation on the cosets of H, and alzo act=
transitively by conjugation on the conjugacy class of H. Mocsaver
we know the numkber of cosets of H 1z the index of H 1n G =
#{E)/#{H). So for example if § is a group of order 28 = (22)(7), than
G has a Sylow subgroup H of orddr 7, and index 4. Then ¢ actz by
tranzlation, transitively, on the set of cosetz of H, yvielding & non
constant homomorphisrn G— 54, Since #(G) = 28 » 24 = #(34). the
mapr i3 not injective, and the kernel 1= a nen trivial norrmsl
subproup n G.

This argument prove: a stronger version of our result that the
tetrahedral group Tetb is not simple, 1e. no group G of order 12 13
simple. For if H is & Sylow 2-subgroup of G, then index(H} = 3, and
we gt & non constant homomorphism from G te 531, Since w(53) =
B¢ 12 = #{G). the kernel is a non trivial normal subgroup of G.

Exsrcisa #25) (i) Prove if G acts transitively on & st 3 with #{5)

= n, and #{5) does not divide n!, then & iz not simple.

(1i} Prove a group of order pg. whers p. q are distinct primes is

never simple.

(iii) More generally a group of order p'n where p> n » 1, iz not

zuniple if p iz prime.

{iv) Frove a group of order p¥, where r » 1, p prime, is not zimpie
Look now at action by conjugation on Svlow subgroups. This i=

harder because we do not know 1n genercl how many p-Sylow

subgroups thare are. We know the number is congruent to 1

module p, and divides the index of ane af thern, Conzider a group G

of order 72 z 9{B) = (32)(23) The Sylow Z-subgroups have index 5,
and the S¢low 3-subgroups have index 8, but 72 divides 9!, and B/,
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o0 we might not get & non trivial kernel fram our homeomorphisms
te S o 59. But if we look at thae action of G by conjugation on the
set of Sylow 3 subproups, we see the number of such subgroups 15 of
form 1.4.7.10, ... and divide: 8. Jo it can only be 1 or 4.

If there 15 only one, 1t & normal and we are done. If there are
4, we get m non constant homomorphism t¢ 34, and zince 72 doss
not divide 4! = 24, again we get 8 non trivial normal subgroup. The
argument does not work as well wiath the Svlow Z2-subgroups sinos
the number of them 15 an odd factor of 9, hence either 1,3,0r 9. But
if there are 9, then the homomaorphisrn to 29 could be 1njective,
hence the kernel might be only (e}, a trivial norrmal subgroup.

Summary: (i} To show = group G is not simple, lock for a
homomorphism to some Sy, with n small relative to #(3), and to do
that look for a subgroup HCG of small index, or with a sraall number
of conjugates; 1.2 look for either a large subproup of G or a subgroup
of G whese normalizer 15 large.

(i} Altheugh computing the index of H i3 easier. remember that
index(M(H)) divide: index{H), and a smaller index subgroup is better

Examples: What if #(G) = 1007 Then 10D = 4{Z5)} = 22(52), and we
have Svlow 2 and S-zubgroups to work with. This is easy since the
S-subgroups have index 4, and we get a non trivial normal subgroup
from the action on cosets. Note alse there are sither 1,6,11,16, .of
thern and the only one of these purmbers that dividez 4 13 1. So tha
Sylow S-zubgroup is itself normal

If #(3F) = 30, then 30 = 2{3)(5), 20 the Sylow subproups have
indices 15, 10, and 6. But 30 drvides 61, 101 and 15/, so0 we don't get
anywhere acting by translation on casetz. What about conjugmcy
clazzes? The number of Svlow Z- subgraoups could be any oodd factor
of 15, the number of Sylaw I-zubgroups could be sither 1 or 10, and
the nurmbar of Sylow S-subgroups could ke 1 or 6. Since 30 divides
1531, 11, and €1, we stll seem to have a problern.

Eut look st the 3vilow 7T and 5 subgroups. If neither i1s normal,
there are 10 Sylow 3-zubgroups and & Svlow S-zsukgroups, o there
are 20 eslements of order 3, and 24 elements of order 5 (Why?). This
cannot happen in & group with only 30 elements. Se G is not simple.

Exercias #20) {i) If G 1z simple and «{3) « 60, then #{3) iz prime
{ii) Prove the sarne razult for G0 ¢ #{&} ¢ 168,
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The simple group of order 160: Let's look at thiz interesting
Eroup in its incarnation as the 'collineation group' of the 7-point
projective plans. Recall that in & projective plane no twao distinct
lines are parellel. Thus not only do any two distinct points
determine a line bhut also any two distinct ines determineg & paint,
hence m projective plane enjov: & more parfeact duality then do
Euclidean planes.

The sirnplest sxarnple is the Hinite plane 7T containing seven
points. Each line heas three points, and the seven lines are shown,
where one looks like & circle. Since we drew the picture in the
Euchdean plane, there are three apparent intersections which do not
correspond to points in 11, These are not darkened, and not lettered,
i1 the picture below. There is alsa a lack of syrmmetry 1n our
picture since it can be drawn with any ane of the lines in TT as the
one lakelled 3, looking like the circle.
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4 "eollineation” of TT is a perrnutation of the points of T which
takes lings ta line: Then the induced map on lines is also a
permuatation, 50 the inverse of a callinemtion iz m callineation, and
the callineatwons forrn & proup. Let G deneote the group of
collineatians af 1. Then by definition G acts on the set of points of TT.
We clairn the action is transitive.
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Looking at the picture reveals that the two Euclidean rotations
of our picture of 1200 and 2400 about u are collineations, permuting
the points a,b,c tranatively. Moreover, 'reflactions’ in the lines L,
M, N perrnuts the paints ,3,2 trangitively. Note that each of these
reflections interchange two pairs of lines and leave three lines
invariant, They also interchange twe pairs of points and leave three
paints fixed. For example, the Euclidean reflection of our picturs in
L exchanges x with v, and b with c, and fixez s, u, and z. (A
projective reflection in a line is not fully determined by the line;
indeed there are three non trivial esllineations leaving the points of
a given line fixed, but only one looks like a Euclidean reflection in
aur picbure)

Ona “reflaction” in the line R exchanges the points u and x. and
the points € and c, fiwing a, v, and b. These collineations show that
gll seven points are in the same G - orbit. Thus we can count the
nuamber of element: of G by computing the stabilizar group of one
point, such as u. Now if u is fixed, the lines through u must be
permuted and wWe carn divide the elements of Gy into thres sets
sccording to how thay act o theze lines, If we consider the
elements mepping L ta L, theze are again divided in half according ta
how thev act on the other two points of L, namely a and 2. Those
collinertions thet fix B and = besides the identity, are the three
projective raflections in L. exchanging x with v and b with ¢, or x
with ¢ and b with v, or x with b and ¢ with v.

[f theze four colhneations fixing L pointwize are composed with
the reflection in ¥l which exchanges 2 with s, and ¢ with ¥, we have
four more callineations fixing W and interchanging a with z.
Composing these eight colhineations fixing u and leaving L invariant,
with the two (Euclidean) rotations about u, leaving the triangle abe
invariant, gpives 16 more elernents of Gy which carry L to M ar ta [V
Thus the stabihzer group Gy containg 24 elernents and hence G
contmins 7x24 = 168 = 279.3.7 elements.

Now recall the proof that the icosahedral group was simple.

We were able to compute all the alernents of each erder in the grouap
tirmply by enumerating the stabilizer subgroups of the vertices,
edpes, and faces of the icosahedron. "We were helped by the [act
that each stahilizer group had prime order, all were disjoint, end
avary #lement of the group belonged to at lsast aone stabilizar graup,
lLe each alernent fixed either a vertex, an edge, or a face. The orders
being prirme allowed us to argue that if a normel subgroup contained
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one elerment of an stabilizer subgroup. it contamed the whole
subgroup. Then the conjugacy of the stakilizer subgroups of the
vertices, for instance, implied that if & normal subgroup conteained
an element fixing a vertex, it contained all #lements fixing any
wertex.

Things are not as easy for the prezent group G = Collin(IT). Far
exarnple, the stahilizer group of a point of TT has order 24, so
althaugh we know there are seven such subgroups, all conjugate,
they are not of prime order and in fact they interssct non teivially
A: ane can ohserve, so we do not even know yet how many #lements
they represent Also if a normal subgroup N of G contains an
alement of cne of these groups it deoes not follow that it must contain
the whole subgroup. Since there are seven lines, alzo acted on
transitively, the stabilizer subgroup of e line alse hias crder £4.

Jince points and lines are somehow analegous to vertics:s and
edges, we tnight use triangles az an analeg of faces. A triangle is
determined by choosing any twa distinet lines, then any third line
except the one passing through the point comnmeon to the first two
lines. Thus the three lines can be chosen in 7#x6x4 = 6228 ways, and
since they can be ordered m 3! = b wavs, there are 28 triangles in
Jf. Since G sctr transitively on these, the stakilizer subgroup of &
trimngile haz 6 slements Obzerve that of the stabilizar subgroups for
points, ines and triangles, nane haz order divisible by 7, z0 we are
not yet getting at Lthe elements of order 7 in our group G this way.

we can analyze the elements of order thres however, by usning
the subgroups lesving triengles invariant. The stabilizer subgroup of
a trimngle contains & elements, two of order 3, three of order 2, and
the identity. We claim all elernents of G of order three belong to
such subgroups. & an slsmant aof @ of ardar three generates a
subgroup of order three which acts an the 28 triangles of TT, dividing
themn inte dizjoint orhits each of order 1 or 3. Since 5 does not
divide 2B, there must be at least one orkbit consisting of one triangls,
1e. an element of order three belongs to the stabilizer group of some
triangle.

Jince the stabiizer subgroups of all triangles are conjugate, we
can study the subgroup for Brny one triangle, zuch az Aabs. We
claim = rotation p about u in the stabilizer group of Aabc does not
leave invariant any othar triangle. An invariant triangle would
consizt of an orbit of three hines under the action of p, or three
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orbits of fixed lines. Looking at the picturs we see that the orbits of
p are the three lines in &abe, the three lines through u, and the hine
5. Thus the only possibility iz the three lines through u, which do
not form a triangle. Since an slement of prder three thus leeves one
and only onae triangle invariant, there are saxactly two such
alarrants for aach triangle, o G containg exactly 20 elements of
order 3.

We can alzo study elerments of order two, since such an
elernent must leave invariant some line, and by acting on thiz ine
rmust fix at least one point. Hence the element permutas the ather
tvwo points. Thus we get all such slementz by looking at the action of
G on uncordered pairs of points. There are 21 such peirs and hence
the subgroup permuting two given points has order 8. We saw
abouve what this group was for the pair {a.z}, since it coincides with
the subgroup fixing u and leaving L invanant.

By cantinuing thiz gearnetric analysis, one should be able to
show that there are exactly 21 elementsz in G of order 2, all
canjugate, and 42 elements of order 4, all conjJugate, but 1t 13 ztll
not clear where the elements of order ¥ are. For now we will
postpone this prajest until we have the tools of linsse algabra
avallable, but vou rmay wish to sxpariment a bit further.

Representing G as a group of matrices, we will shaw Ister,
using matrix algebra, that in addition to the alament:s menktioned
above there are exactly eight conjugate subgroups of order 7. With
the identity, this gives the whole proup. Assuming these facts, any
normal subgroup N of G would have ordar n, where o divides 168,
and n is a sum of the integers 1, 36, 21, 42, 48. Consegquently #({I) =
1 or 168, which waould prove that G iz simple

Challange: {i) Frove G has 21 elements of order 2, all conjugate.
{ii) Prove @ has 42 elements of order 4, =all conjugatea.

{iii) Find an elemeant of order 7 o G.

{iv] Find ell elernents of arder 7 1n G.

Applyving 3vlow to classifying groups of amall order

Az we have seen, the Sylow theorems give information on the
subgroups of a group, in terms of the ocdar of the group. 1z it
paszzible that this information is so complete that piven the order of
a group. we can list all possible structure: for that group? That
seermns like w forrnidabkle problemn to solve in any ressonably efficient
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way (although one might write & computer program ta list all
possible group multiplication tables with n symbels), but some
modest wet pretty results are possible. Of course a group of prime
order p is cyelic, isomorphic to Zp.

More generally. presumably the fewer the prirmme factors in the
order, the fewer groups of that order. It turns cut that for a group
whaose order 12 8 product of two prime factors there are three
possibilities: either a cyclic group, a (direct) product of two cyclic
groups, ar a "serni direct” produst of two oyclic groups (a
generalization of a dihedral group). The point is that the two prime
factar: of #(Q) give two interesting subgroups H, K, and then one
tnust consider whether H, K commute with each other in &, ar nat.
That exhausts all orders up to 13, except for 8 and 12

When w(G) = 12 there are sgain two intarasting subgroups
from which G ix eonstructed, but rmore poszsibilitisz for thers and for
how they interact. In all but one of these cases the group G is
constructed from the subgroups H, K by either the (direct) product
construction or the "semi direct produst” construction, which builds
in the conjugation action of one of the subgroups on the other.

For #(G) = B, there still remains one possibility, the unit group
of the integral "gquaternions’, a spacial caze of m construction
discovered by Hamilton and Gauss, pensralizing the complex
numbers, and even this group can be realized as & guotient of &
serm direct product.

The paint is that to recover the structure of & group fram that
af ity subgroups you need to know how the subgroups fit together to
make up the group. For sxample the groups 33 and Zz=Z3 both
contain subgroups isomerphic to 22 and 23, which in both cases
gehiernte the whele group and have trivial intersaction. But the
Eroups they generate are differant hacausze in F2x 27 the subproups
are both nermal (they commute with each athear) while in 33 they
are not. e knowing the subgroups H, K of G only reveals the
rmultiplication law for slaments of H and K, we also need to know
how to mualtiply products of such elements. Te svan if the products
in HK exheust the group G, trying to rewrite an slament of form
(hk¥h'k') az ene of farm QK" requires knowing to what extent
elerments of H commute with slements of ¥

In particular we nesd to know when hkh™1 = ¥, is we need to
knaw the action of H {or G) on K by conjugation. As mentioned
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ahove, with enough of this information, we can sometimes
reconstruct G from the subgroups H, K by the "serni direst product’,
which penerahzes the construction of dihedral and product groups.

Wote that the cleassification of groups has two parts, uniguenesss
and existence. le. the Svicow theorems start only with the arder of a
potential group and give restrictions on the possible subgroups, but
to produce actuel groups satisfying those restrictians we rmust
construct therm. This iz where the product and serni direct product
constructions corne . wWe will also sitnply pull 2 couple of groups
cut of the air We start with a couple of easy results an how to
define homomorphisms of product groups,

Exoarcize #27} (1) lf 4, H, ¥ are groups, and « G—H, and p&—K are
homomorphizms, then the meap G+ HxK defined by sending g to
(oe{g).B(g)) in HxE is & hormomorphism.

{ii) If x 3K, and pH—K are group homomarphisms where the
slements of «{l} commute with the elarpnents of p(H) in ¥, for
exarmiple if K iz abelian, then there is a unique homomorphizm
GxH= K, defined by sending {g.h) to «(g/-pth) in K.

(ii1) Lf G is m finite group with normal sukgroups H, K such that
#(H)w(K) = »{G) and HNK = {e}, then the natural meps G= G/H,
G—+ G/ K induce an izomorphism G—{(G/H)=x(G/K),

(iv) With the same hypothesss ms in (i) prove the elements of B
end K commute with each other and that the injections HCG, KCG
induce an isornorphism HxK—+ 3.

Groups of order p and p?

In case yau rrissed thiz exercise, we classify groups of orders p, pt.
Proposition: (i) If #({G) = p 15 prime, then @ & Zp.

(ii) If #{@) = p€ where p is prime, then § ZypZ or ZpxZp.

proof {i): If x = & iz & non triviel element of G, x generates a cyche
subgroup <x> whose order is » 1 and divides p, hence <x> = G QED (i).
proof {ii): If ®{G) = p€ where p is prime, we know @ is abelian, and
all non trivial elernents have order p or pé by LaGrange. [f any
slarnent x has order p2 then @ = Zpi. 1f not, and x hasz arder p, the
sukgroup <x» € G is isornerphic to Zp, and any =lement v not in <x:
grerates a subgreup (¥»CG also isormorphic to 2. By Ledranges,
(1N} = {8}, By ax. 28(i) the maps ¢ G—+G/ x> and pE— @/ 0y given
hernornerphism £G2 (GAewd ) (G eyn) & Zg<dp, with kernel <o ndyr =
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{el, hence an isomorphism. QED {ii) and the proposition.

Groups of order 2p.

“We know all groups of orders 1, 2, 3, 4 and 5, by the pravious
proposition, narmely {e), 22 3 24, Z2x¥2, and I5. Note these are
alt abeliar. Now we ask for all groups of order 5. We know of only
two, £ and 3%, which differ since g is akbelian but 3% 13 niot.

Fropotition: There are exactly twao groups of order & 25 and 53,
Proof: Let G be any group of order 6, hence by Sylow s theorems
there exist elements x, o of orders 2 and 3 respectively. Thusz (o> is
g8 normal subgroup of order 3 and G = <&> U <x>x consisty of the

elements fe, o, a2, x, ox, wex) = {efxt: 082 01t 1}

To determine @ completely we need to know how to multiply
any {wo of these elements. For example we need to know what 15
xoo, or what is {x2xex)? Notice that the answer to the first
question would slzo mpswer the secand sines (xZx){ax) = xZ(xalx.
Le if we could rewrite xa az a praduct in the sther order «%xt, then
we could write (eZxhox} = of{xixtly = -:::2*'5:-:1"'t, which is a known
elernent of 5. If x commutes with v then it follows that G is
commutative and we have (aSxtHaWxV) = gstuytry

Thus letting «5x! correspand to {s,t) gives an isormorphism of G
with £3= 2. More abstractly, since « and » cormmmute, the
homomorphizms p €3G and ¢ £2—+G with (1) = = and (1) = x,
define by Ex. 27 {ii) abowve, & homoarphisrn (px ) Zzx ¥z — 3G sending
{g,t) to x5kt hence sur jective, hance an 1tormorphism.

Now assume x and x do not cormmrnute in G We still only need
to know how to rewrite xa as & praduct of form «3xt, to determine
all multiplications in G, since to turn (a$=){cYxY) = c¥xadxzV into
a product of form «®xP wa just need to move sach of the left-rmost
x past the «™ on itz right. Eg of x« = «kx, then {a®x){axV) =
adlxo)xV = xS okx)xV = x3*kx1*V  The product (&%x){xZx¥) just
takes two steps, ie (wiSxHaZaV) = a¥xolaxy = cMakylaxt =
Stk inV = af K{akulxV = a$* TRV L 1f wo = ok it is even
ERSIET.

Za which elemant of (&, o, €, ¥, nwx, ot} agquals xoe? By
hvpothesis Xo 2 wx. Alzo o & x, and xoo & o, 5ince neither ¥ hor o
it the wdentity If xe = @2, then right multiplying by «2 gives x = «

"
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s contrediction Hence only one possibility remaing, that xo = alx.
Thus there iz only one postibility for a non abelian group structure
on @, and hence it must the one corresponding to 33, QED.

If we examine this argument we can simplify it & great deal
le we can take more advantage of the fact that x> iz a normel
subgroup of G, Jince <= 1z nermal, W knosw K4&> = (®rK, 30 ko =
ockx for sorne k 3 0. Hewes if 5 iz tot abelian then k = 2, and we
have exactly twa groups of order B.

Bv taking even more advanteage of normality, we can prove a
rmuch stronger result. Note that ke = x¥x if and only if xecx™) =
« K, 30 to determine the multiplication completely we only naed ta
Enow the conjugation action by ¥ on the normal subgroup <o,
Since conjupgation defines a homomorphism 2 = o~ Autlox:) @
AutlZs) = 22, the group structure is cornpletely determined by the
conjugation hamorphism 22—+ F2.

Since there are only two such hamernorphisms, (the trivial ene
and the identity), there are only two possible group structures. Here
the trivial hormomorphism cerresponds to the trivial conjugation
action, ie wox~1 = £, OF X& = X, 50 glves the abelian group £3xE£2
= fg. The non trivial hormmomoerphism corresponds to the non triviel

conjugation action xoex~ 1 = ol and gives the non abalian group 33.

Proposition: There are sxactly two groups of order 2p, with p > 2
and prima. the cyelic group £Zp and the dihedral greup Dp.

FProof: By 3ylow, if G has order Zp, thers ars slernents o, ¥ of orders
p end 2 respectively, <wy & Zp1s a normal subgroup, and

G = <omr U coevx = [ew=xb: D ¢ 52 p=1, 0 ¢ t ¢ 1}, Naw we need:

Lermnma: The multiplication in G iz completely determinsd by the
cenjugation action of ¥ on (&>, 12 by the conjugation

hemomorphism 2 ¥ <0 = Aut{tor) 3 Aut(Zp) = Zp*(Ex. 12 (v)).
Proof: If this homormorphism tells us that xaSx~1 = ot then x«® =
xbtx, and we can multiply as follaws: {eUaMo®x) = Wiva)x =

wUotada = Uty = 2t Since we know such a formula for
every 5, all multiplications are determined. QED Lemma.

Corollary: There are at mast twoe group structures on G



12

prect: The number of group structures is at most the number of
homomerphisms Z2 —+Zp*, which equals the nurnber of elements of
order two in £p®*. We claim 1, and -1 (= p-1), are the only elements
of order 2 in Zp*. le for an integer X, X2 = 1in Zp* if and only if p
divides X2-1 = (H=10(K+1), if mnd snly if p divides either X-1 or X1,
if and anly if ¥ iz equivalent modulo p to eithdr 1 or -1 in I*. QED.

Since Zzp and Dy are different groups of order Zp, we are done.
QED Prop.

Groups of order pg

Can we extend these results to groups of order 3p, with
pr 3 and prirme? We can again find slerments o, x of orders p and 3
respectivaly, and concidar tha conjugation homornorphism
23 = ou—rhutieas) 2 Aut(Zp) = Ty* Again we see that the
nummber of group structures on G 1s at most the number of such
harmarmarphitrns. Buk thiz time, if p = 17 say, then thars is no aon
triviel hormomarphism fraom Z3 to a proup of order 16 by LaGrange's
theorerm hence the elerments = and ® comrmute and (hy Ex. 27{iv))
there 15 only the cornmutative group structure on G isomorphic to
£5=&17 = I91.

20 there is a key difference according to whether or not 3
divides p-1. BPut what if J deoes divide p-1, say p = 137 Then our
argument shows the nurmker of group structures on cur group G of
ardar 3+137 = 39, 137 at most egqual to the number of hememorphizms
Z3—+Z13* This equals the numker of elements of crder 3 in Z13*.
and we can agajin argue that thers are three of thezs, parnely (1, 3,
91, but this time it turns gut that the two non trivial
homomaorphisms give isomorphic groups!

First we prave the easy rasult, then the mere interssting one.
Froposition: [f p > q are prirnes, and o does not divide p-1, then
there 15 anly one group of order pg, the cyclic group Epxdg & Lpo.
FProof: We can argue as above that if &, ¥ are elermments of orders p,
g respectively, then the group structure iz deterrnined by the
conjugation homeomarphism 24 5 0 —aut{cad) @ Aut{Zp) 5 Zp',

mnd since q does not divide p-1 = #{Zp*) there iz only the trivial
homomorphism by LaGrange. Hence conjugation is trivial, the group
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is commutative and by Ex. 27(iv), the map ZpxZy— G taking fz.t) to
32 iz an isomorphism.

We could also argue using Svlow that the number of Sylow g
subgroups 13 congruent to 1 rmodule g and divides p. But if 1 + gk
divides p, then 1 * gk equeals either L ar p. If 1 + gk = p then gk =
p-l. and q divides p-1. a contradictionn So there iz only one Sylow q
subgroup which it tharefore narrmal. Again by Ex. 27(iv) the induced
map Epxdg— 3 it an isornorphism. QED.

Jo far we heve classified all groups of orders up to 15, excenpt
for orders 8 gnd 12, le. for each prime order £, 3, 2, 7, 11, 13, apd
mlzo for order 15 = 3-%, there iz only the cyclic group, and for the
five orders 4, 6, 9, i0, 14 there are only the ten groups X4, 222,
2r, D3 = 53, 29, F3x23, 240, D5, 214, and D7. To classify groups of
orders B and 12, and non abelian groups of order pg where o divides
-1 we need a8 new construction: sermnil direct products.

Sarni dirsact productas of groups

ln the previou: caze: aur graups 3 were compounded in some
wey from two subgroups K and H, one of which was normal, by
knowing the rnultiplication in each group separately, plus the
conjupation action of the non normal group on the nermel one. The
whole group is & bwisted product of the two subgroups in a way we
want to meke precise next. (I learrned this topic from Hungerford,
Algebra)

Let H, K be groups such that H "acts” on K, ie let thers b
given a hormnomarphizsm o H= Aut(K). Since K is more than a set, it
17 neturel that elements of H should ast wia group automorphizmes
rather than just bijectionzs. le our action of H on K is not just &
homomorphism H— Bij(K), but a hornomorphism with image in the
subgroup Aut(E)CBi (K} Thiz iz naturae] tes sines we want ths
sction Lo turn out to be conjugation in sorne bigger group.

To construct the bigger group we taks the Cartasian product
set K«H and we uze o« to define a multiplication different from that
of the usual product group. For h in H, k in K, we denote ac{hi(k} by
tt k) or sirmply by hik), and then set (k h)-{k{, k1) = (k-hik1}), h-h1):
le we just give ki a little twist by h before multiplying it by k. If
the action o H— Aut(K) is trivial, ie if (k) = id for all h, this is just
the multiplication in the ordinary product group.
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In ganaral wa call the new group the "sermi direct product” of K
and H, via o, denoted K=, H. (Of coursze for all we know at the
rrmarmant K« H might be izomarphic ta H«K by zome cleverly chosen
iamorphism, aven when o is non trivial. But see the next sxsroize)

Exsrciss w28) VWith definitions sz abous, prove:

(i) The semi direct product ExH iz a group.

{ii) The subsets E = {{k. e} for all k in ¥}, and B = {{e.h) for all h in H}
are subgroups of 6 semecphie ta K, H respectively, and K is nermnal,
{iii) The action of H on K via &« kecormes the conjugation action of H
on K. ie if k = (ke), b = (gh), then hkR™1 = {x(k){k)} ™ = (hik),e),
{iw} H is normal in KxH if and only if « is the trivial
horaomorphism.

(w) If H, K are subgroups of & proup G, ¥ is normal, and we define

o H— Aut(K) to be conjugation of K by H, then letting fik h) = kh,
defines s homomorphism FEzgH—+ G, which is surjective if G = KH,
mnd injective if KNH = (=}

Remark: (i) If « I3 Aut(Zp) 2 Zpt iz the unigue non trivial
hormomorphism, then Ipx o2 = Dp. the dihedral group, by Ex 2B{v),
Jince the unique non trivial sutornorphism of arder twa of I takes
each slement to its invepze, o corresponds ta the forrmulez found in
Ex 5(iii) for D3, where «{R)}p) = RpR-1 = pz = p-1

(1i} By Ex 28(1i), semi direct products with H, K both non trivial
never Yield nimple groups.

(iii) As we will see, one can obtain all groups of order ¢ 15 from
semidirect products and their gquotjants.

Mext we show that diffsrant harmaormarphisrms o can define
isormer phic semi direct product groups.
FPropoaition: Let H, K be groups, « H—+ Aut{K) a homomerphism,
gH—H an autamearphizm of H, and dafine = H=Aut{K) by & = a:.g_i.
Then the mep pEx x H Kxz H defined by @ik, hl) = (k.gihll, is an
i1sorrior phism.
Proof: ¢ is a bijective funcuan, with inverss r,p'll{k,hll = (kg” 1{h)), 20
v check the homomerphisin property. If (k ki, (k1,h1] are in
KxxH, thewr product iz {(k.h)-{k1.h1) = (k-x(hi{ki) hhi), whoze image
is plk-a{hM¥kl), hhi) = (k-ax(hiky). glhh1))
On the other hand the two images of (kR k) and (k1 k1) arse pik h) =
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(kg h)) and @ik k1) = (k1. gth1d), hence the product of the images
i (kglhl) k1. glh1)) = (kaiglhlliky). glhiglh1)). Since %g = «, and g
iz a hoemeomeorphism, thus indeed pi(k,h)({kq k1)) =

(Raoe(hl){kq], glhh1)) = (koe(gthii(kl), glihlgth1) = @k hi-plk, hy).
QED.

We need an alarmentary fact ta be proved later. We defins the
product ab of two slernents a, b in IF' by taking the rearmaunder after
divizion by p. of their usual integer product.

Fact: There are at rnost q solutions in Zp of the equation X9-1 = 0.
Sketch: If we have a solution ¢ of X9=1 = I in Zp, thean we can
divide X9-t by X-c o get {9-1 = (M-cif{X), where f is a polynomial
of degree g-1 with coefficients in IP' If there are g solutions €1,...Cg
then we eventuslly get ¥9-1 = (X-c1)(¥-c2). (H-cg). If c is any
other solution we rmust have 0 = ¢9-1 = (e-cyjle-eg). (e-eg) in Zp.
Jince p divides the right hand product it divides one of the factors,
but if p divides the factor {(e-cj) then o = ¢ in Zp*, and thus ¢ is one
af the q saolutions cl,....Ce. QED.

Corollary: If 4 divides p-1, and g, p are prirme, there are sxactly
-1 nan trivial homomerphisms « g— Aut(Zp) * Zp*.

FProof: A non trivial homomorphism &« carrasponds to a choice of the
element «(1) of order g in Zp*, thus to & solution (other than X = 1)
of the equation X49-1 = 0 in Zp*. By the fact above therse are at
matt §=1 zuch soluticns other than the chuvious solution X = 1. But
by Sylow, since o divides p-1 = w(Fp®) there is & subgroup aof arder
g in fp*, and any non trivial element of that subgroup has order q.
Hence thare are exactly g-1 elements of order q in Zg*. QED.

Corollary: If p, g ere prime and o divides p=-1, all non sbhalian
groups of order pg are isomorphic.

Propi: [f w(3) = pg, let p. % be elements of & of orders p and q
respectively. Then the subgroup ¢pr of arder p iz pormal, <prox> =
{e}, mnd thus G iz the union of the o cosets <prut of <pr by powers of
¥. Thus G = the product <pr<x>. Then if = (x> Aut{fr) is the
conjugation homomorphism, by Ex ZB(v), since (p> & IF“ mpd <x> =
g, we get a surjective homomorphism ZgxoZg— G, which is an
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isomorphizm since these groups have the same order. Thus every
group of order po is isornerphic to a semi direct product Zp= g far
sorme homomnorphism cig=aut(Zpl & Tp*.

We know a non abelian group comes from a non trivial
homomerphism, and we have just proved thers are exactly q-1 non
trivial such homomoeorphisms «, each sending 1 to one of the o-1
elerments of order g in Zp*. Now let « be one of these
harnarmarphisims and & any other. We wish to prove that
Ipxa?_q = Ipx &Iq. We know the elements of order g in IP' g
the non trivial eletnents of the image subgroup «{Zyl, since that is a
subgroup of arder q in £p*.

Jince by the Fact above, therea are only o-1 elements of order g
in £p*. in particular the images o{Zg) and &(Zg) are the same
subgroup in £p*. Thus there i3 same noan zera elernent j in Iq surh
that =(j} = &(1). Also Aut{Z4*) & Z4*, s0 an automorphism g of Zq
is determined by choosing & non zero element of g to be g{l), Let g
be the mutomorphism of Zg such that gll) = j. Then «{g{l)) = =()) =
wll). Jince «g and % agree at 1 they agree everywhare on Ly, so =
= %g~ 1. Then by ths Proposition above, Zpxode & Ipxmdqg QED.

Corollary: If p is prime there is exactly one group of order p; if pg is
m product of two primes p ? q. there are one or two groups of order
pa, and there are two such groups iff either p = q. ar q divides (p-1).

what about groups whose order 15 & product of thres primes? wWea
have dealt with all groups of orders ¢+ 15 except for orders 8 and 12,
brecizely those proups whoze orders have three prime fastors.

Exarcize #29) (i} Prove there are sxactly tweo nen issmarphic
groups of order 12: F4x=xF3 and 22xF2=F7.

{i1i} Prove there are exactly thres non isomorphic abelian groups of
erder B, £p, £2-&d, and £2=&2=F7.

The next theorern finishes classifying groups of order 12
Theoram. There are sxactly three non sbelian groups of order 12,
the dikhedral group D, the tetrahedral rotation group Tet, and the
gerni direct product Zax, Fq where ao-f4— Aut{Z3z) = I2 iz the
unigque nen trivial homomorphisom.
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Froof: By Jvilow, a group @ of order 12 has a subgroup H of order 4
and & subgroup K of order 3, where HNK = {g} by Lalrange.

Lemmma: In a group G of order 12, either m 2-8vlow subgroup H or a
J3-3vlow subgroup K 13 normal.

proof: If K i1z not norrnal, there sre 4 conjugate subgroups of crder
3. hence 8 elemnents of arder 3, leaving only four other elements.
Since a 2-Sylaw contains four elernents, nene of order thras, thers js
only one 2-3ylow subgroup, which is thus normal. QED Lernma.

If both H K are norrmal in G, then the map G—(G/HI=<(G/K) 15
BN Isomorphizm az 1n ex. 290iv], and sinecs we know both GFH, and
G/K are abelian, § would be abelian, contrary to hypothesis. So if G
17 nen akelian, sither H or K 15 normal but not both.

Assurne H iz normal: then there are 4 Sylow 3-subgroups
conjugate to K, and G acts transitively by conjugation on them,
giving a homomoerphisrm o 8— 54 whose kernel iz the intersection of
the narrnalizers of the conjugates of K. Since the order of the
conjugacy clazs of K squalz the index of the normalizer of K, we see
each conjugate of K is its own normalizear. Conzegquently the kernel
of o iz {g}.

e claim the image of this homomorphism is the group Tet,
{thought of as a subgroup of 34 via the action on the faur vertices of
the tetrahedron). So we must check that G acts on the conjugates
of K in the sarne way that T scts on the vertices of the tetrahedron.
First, since aach conjugate of K is its own normalizer, it acts
trivially only on itze]f, permuting the other three conjugates.

Thus the map x takes each conjugate of K o the stabilizer
subgroup in T of one wvertex. Jince the eight elements of order three
in those stabilizsr groups generate T as 2 subgroup of 54 we are
done. In this case one can also show H = I2x82 K= F3, and G =
Hu K, where oo K= Aut{H) = 33 iz sny non trivial homornorphism
[Ex 30 below].

Axsume K & Z3 ir normal: Then H is izamarphic sither to Z4 ar to
Lzx&z, and acts non trivially on K by conjugation. If H % 24, then
the congugation action rmust be the unique nan trivial
homornorphism ofg 2 HoAuul) = Aut{F3) = 7 Thus E =

F A Py
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IfH= Zz=xZ7. then again we need to carmnmpute the
homomorphisrm a H— Aut(K) & Zz. Since Aut(H) = AouwZz=xZ3}) = 53
permutes the non trivial elements of H in all possible ways, any non
trivial homeomorphism « 15 sequivalent to any other, up to an
sutomorphism of H Thus there is exactly one group G up 0
1soraorphisin in this cass namely (F22821x 483 where
o L2xZz— AutlZ3) iz any non trivial homomorphism.

We claim this last group 15 0. Note that since Df has a cyclic
aorrasl subgroup £ of crder b, and since conjugation asts 10 pragarve
the slernents of order three of 2, those elerment form a normeal
subgroup K of order three. Thus one of the last twa groups found in
the theorern iz Dg, Jince we know too that D has 2 elernants of
order &, twe elements of order 3, one of order 1, and 7 elements of
order 2, there are no elemants of arder 4, and the Sylow 2-zubgroup
H iz 1zomerphic to £2x 22, Thus it 13 the last case above, and
(ZzuZPing Xt = D & ZpxpZ2 where p 2+ Aut(Ir) = T2 iz the
unique non triviel homomorphism. QED theorem.

Exercise 230} (i) Show thers (s no nontrivial harmormorphism

a T3 Aut(Zq).

(i} 1f G 15 non abelian with #(3) = 12, H is & normal subgroup of
grder 4, and ¥ & subproup of order 3, prove G & (Z2xZ2)x E3,
where o 23— Aut{Z2=x72) & 27 12 a non trivial hornomoerphism.
(iii} Prove there sre exactly two non tewwvial homomorphisrms

oo Zs=Aut{ZzxZ2) 2 5%, vielding izsarnorphic serni direct products.
{iv) Prove no two of the three groups in the praviou: theorsm are
1somorphic.

You will show next that thare ara two non abelian groups of

order 8 = 23 We kowow one such non abelian group is D4, If you
have read zome hizstory of mathernatics you rmay have sncounterad
the other onsa, the group @ of “unit quaternions”’, discovered in 1843
By Willlamn Rowen Harmilton, the Irish mathematician, astronocmer
and poet, (aithough it has been found recorded sarlier in Gausy
private notebooks). Hamilton was trying to generalize the familiar
cornplex numbers n+hbi to higher dirnansions, and sventually realized
he rmust give up commutativity. The rule for multiplying bis
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guaterrmians of form arbntejrdk, where a, b, ¢, d are real numbers, 1
given by the rules 12 = J?- = kZ = -1, lj=k jk=1ki=}j and 1= -k
kj = -1, 1k = -}, and the fact that real numbers commute with all
athar gquatarnions.

I1t 1= =mid that Harmilten, in cealabration, carved these rules on a
bridge while out walking| Considering only gquaternions with
integral ceafficients, those wath multiplicative inverses form the
group of "unit guaternions” & s {t1, ti, 2], tkl. You can chasck that
Qs a grocp (hint. assaciativity far preducts of i, j, k iz sufficient)
and that the groups D4 end @ are not isomorphic (Hint: count the
number of elements of orders 1,24 in each).

Exerciza #31) Prove there are only tws non abelian gproups of
arder 8 |Hint: Show if #{8) = 8, there iz an element x of order 4, but
na element of order 8, and (x) is normal in G If v is not in (x), then
sither w< = xZ2 gor v = ¢, and yxy 1 = x2. Each of the two cases g
= x< and y¢ = e, determine a unigque group, (8 and D4 respectively) )

Rernark: We have produced all groups of order ¢ 15 by the
sermdirect product construction {recalling that erdinery products
are s special case) except the quaternicn greup. Nailve attempts to
produce €1 az a product do not succeed, so we try a rmodified
construction where the factor groups are no longer disjoint in the
“product”. e a sermni direct product of £4 with L4 gives enough
alsrpents of order four for @, but too many slements of order two.
{ine solution 15 Lo identify sarne alaments of order two by & gquotient
BS in the next axercise.

Exarcian #32) (i} Prove that ] is not the semidirect product of
any two of itz subgroups.

{i}) If %(3) = 8. & non abelian, and x an element of order 4, lat ¥ ha
any element not in x> If ¥ has order 2 show that G iz isomaorphic
to Lgxgd? = D4, where o F2— aut{fg) & Z7 is them unigque non
trivial homomorphism.

{ii1) If #{G) = B, G non abelian, and x an element of order 4, and v
be any element of order 4 not in <x», show there iz & sur jactive
homomorphisrm Zax s Za— 38, where o Z4—=Aut{Zq) = 2 is thes
unique nen trivial homomerphism  Thus @ is & guoti=nt of the serni
direct product Z4x4 24 by an element of order 2.
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{iv) If w:Za—AutiZq) s ¥7 iz the unigue nan teval horaoraor phisrm,
prove that any point 2 af arder tweo in F4x o4 iz in the center,
hence generates & normal subgroup, and that Q = (T4 L4)/(z).

Challenge: Try to classify all groups of orders up to 31,

%9) Symmetric and altsrnating groups

Abstract properties can be powerful, but it is erucial to be able
Lo rmake axplicit calculations with elarments of groups, just as we do
with coordimate vectors i Euclidean space. The finite group
snalogous ta RN 1e an exphlicit finite group in which other finite
group: can be embedded, and 1in which concrete caleculations are
possible, is the proup S, Since thers ars two cornmoen but different
canventan: for writing the cperation in this group, we first discuss
e notational convention that divides algebraists from the rest of the
mathematical warld, narnely the erder in which they write
cormmpositions. To an algebraist, the cormmpozition fg of two functions f
and g means first apply f and then apply g, whereas: to avaryone
alta it rneans apply g first and then apply f Thare 15 ne bg
difference, but it iz canfusing if you don't know which convention is
being used.

‘We will ordinarily stick to ocur usual "non algebrast”
convention for compesition of functions in these notes. Jometimes
however | rnay find it conwvenisent to uze the algebraizts’ convention,
the "appozite” convention, when dealing with multiplication of
‘cyveles”. 1 will navrer do this however without telling vou o first.
Thus for us the group Sy equals Bij{il 2.3 .nl) where composing is
done in the usual order farniliar from calculus, ie. where fg means
first g then {. If we ever wish to use the algebraists convention on
composition of permutations, we will not write the group as 3p, but

we will write it as 3P, the "opposite group”™ af Sy, In general svery
Eroup has an opposite group, whoze elements are the same but
where roultiplication iz done 1nh the opposite order.

[Digrassion on the “opposita group” The remarks akove are sl
you neesd, but if ¢¥ou want to know a sormewhat tedious way to
make this precise, read on  Otherwise skip to 'End of digression."

If Giz any group, there i3 another group, the “opposite group of
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3", denoted GF, whoze alarnants are the same as the elements of G
but whose multiplication is defined in the cpposite order to that of G

Thus if x,y are two alements of G, the product xy in G°P is defined to

be the product vx in G Then the group Sn®F has the same elements
as the group 8n, namely bijections of the set {1,2, .0}, but the
composition 1s written as follows: if g, 7 are two permutations in
Sn9F the produsct ot denates the perranutation cbtained by applying
o hirst and then .

To ke=p the groups G, GPP straight, let's write x+ v for
multipheation in GOF, and xy far multiplication in G, Thus x+y = yx.
Now |et's tea if the two groups are isornorphic, In particular look at
the identity map ¢ from G to G9F with gix) = x. Then plxy) = xv
[since ¢ 13 the identity map] = vsx = plvlsrpix). So p iz not an
itarrarphitrn, or even s homomerphism, sinee it changes crdsr of
raultiplication.

Honetheless the two groups ars isommeorphic, by the map taking
% in 3 to wix) = x~1 in G9P, since then Qixy) = (xyi~1 = =1x=1 =
Ylwhix) = pi{x)+Qiv]. Moreover | is its own inverse, hence is an
1Iomorphism.

Thiz dizcussion hay shed light on the sulject of group actions.
Recall we defined arn action of a group Gen a zet F az a map Ge3=3,
such that <e.x: = x, and <gh, %> = <g, <h.xr», and we proved the map
taking g to the action of ¢ an 8, iz & homomorphism of G— Bij(3).
Our definitien is rnore precisely called a "left action”, and if we
change it to require that <e,x» = »2, and (gh, x> = <h, gx>, wepget s
definition of & nght action. A& right action of G on 5 makes the same
map, the one takmg g to the permutation of 5 given by g, a
homornor phism G— Bij(3)19F. (It rnwy leck more natural to define a
right action a5 & map 3x8—+3, such that ¢ e = %, and ¢x,gh? =
cou,ge hy ]

[f you rmively define the conjugation acticn of g on H to be
g~ 1Hg, and try to prove it gives a homomorphism of G to Bij{3}, you
hawve a problern. This 15 a right action, sa it pives a homomorphizm

to Bij(8)°F, Dv the isomorphism we have just ssen between G and
GOP, taking every elernent to its inverse, it iz not surprising that
redefining conjugation by g to be gHg™1 corrects the problem.
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In general, our actions usually arise frorm a group and a
subgroup, or a collection of #lamantsz, by translation or by
conjupation., and wa always have tha chaoica of laft translation or
right translation. Moreowvar wa can canjugate ¥ by x, getting x;:,rx'i,
with x on the left, or we can conjugate v by x 1, getting }I_l}F}:,
with x on the right. Hence i each case we can always choose either
a left or » right action as we please. [ndeed even if we have only
one natural choice of action, we can alwayz change a right action
into & left mction by replacing x by x~ 1. So there is never a problem.

If we want the action to give a homomorphism to the usunl
groups Bij(3), or Bijlll1,2, nm)) = 35, with usual cornposition, we
chooze m left sction. If we want to get a homomorphism to the
algebreists’ varsion Bij(3YP, or Biji{1.,2.. nheP= 34°P, with
compasition in the opposite order, we choose a right action.

End of digression.]

Cycle decomposition of & permutation.

An element o of Sy can always ba written in & Unigue way a3
& product of disjoint "cyecles”. To de thiz simply decompose the sat
(1,£,3. . nl into its disjoint orbits under the action of the subgroup
cansisting 9f powers of o, and erder sach orbit so that o()} follows )
For instance o = {124)35) is the alement zending 1 to 2, 2 to 4, 4 to
1, 3w 5, and 5 to 3, and fixing all other integers between 1 and n.
This ¢ is composed of a I-eycla, (124), and » 2-cwcle, (35)

Definitions: & cvcle is an element of S for which all hot wt rmost
anea af the orkits are singletoris. An r - cvcle iz a cycle whose largest
orbit haz length r; ag. the 3 cywele (243), which Eixes all mmtegers from
1ton except 2,3, and 4. & Z-cycle iz called = "trﬂnspnsitinn".

Theorarmn: Lt G iz a finite group of order n, then G iz isomorphic to
some subgroup of Sy

proof: We will define n left action of 3 on itzalf, whers the acticn of
€ on X 1z gx. then gh acts on x sz (ghtx = glhx), a left action. This
gives m homomorphismn G BifGE), and if wa choose an ardering of
the slements of G, ie, & kijection G412,  ni for n = #{3), the
rmap Bij(G)— 5n sanding ¢ to fpf~1 is an isarmarphism. We can then
cormpose G— BijlG) = 5y to get & hommomerphism G—+ 5 which is
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injective, since only g = & acts as the identity on any element of G

QED.

Theorem: For n : £, every element of Sn can be written (in pozsibly
many ways) as & product of (not nesessarily disjoint) Z-cyeles,
proct: We know every permutation can be written as s product of
cveles, so it suffices to show every cycle can be written as a product
of 2-cveles. Remember we are cormpozing right to left, not as
mlgebraists do To wit: (123) = {(13)12); (1234) = {14)13¥12}); more
generally (ahcdf) s{afadiaci{ab), where a,b,c,d, are all distinct; get
the idea? If you prefer, {(ajaZas... ar) = {(ajar)... (ajaTt){alae?)where
gll the aj are distinet. QED,

Important remark: If n 2 2, the group 5 has & normal subgroup
of index 2 called the subgroup of even permutations. To prove this
requires 8 little work, and | chooze to aveid thiz werk to sorne extent
by borrowing on the theory of determinants, which [ hope is
familiar to yvou [If not. consult the Appendix ]

Definition: A permutation matrix of sige n is & matrix whose
columns are & permutation of the colurnns of the n by n ideantity
mstrix

Definition of matrix multiplication, det product

Novr wa rmust agree on a definition of matrix mulupheation.
We stipulate that when we multiply AB, the answer igs the matrix
whaosze (1, }] entry, 1.e the entry in the ith row and jth column, is the
dot product of the ith row of & with the jth column of B, where the
“dat product” of two numerical sequences (a1 a2 .. ap){by bz . bpr)
of the same length is the number aibi+azbas . +apibpy.

Theorarm: S 1z 1sormerphic to the graup of permutation matrices,
where ¢ in Sy corresponds to the matrix |¢] whose jth column iz the
“e{jl-th" column of the n by n identity meatrix

“progf’: The kest way to see Lhiz is by axarmple. Conzidsr the
bijection ¢ sending 1 t0 3, 204, 3te 2, and 4 to 1. If ej is the jth
standard basiz vector in 4 space, with all zeroes except &2 1 in the
Jth entry, then the first column of [¢] iz =3, the second is &4, the
third iz ez, and the fourth i1z ay If we multiply this matriz by the
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coluran &1, we get a3, ie [ple1 = ex. | we multiply l¢] by ez, we get
[plez = eq. Similarly, [ples = &2 and [gled = e1. Thus [g] permutes
the vectors {e1,..en} exactly as ¢ permutes the integers {1, n},
[pley = &gy,

Morasver sur definitinn maks: matrix multiplicetion the same

as compositinn in the usual (ripht to laft) arder. Thet's the whole
peint; the permutation matrices are isomorphic to Bijiley. _enl)
which 1z 1zamocphic te Biji{l,..  ni] = 5. QED.

Dofinition: The sign of & permputetion is the determinant of ity

corresponding permutation metrix, sither 1 or -1. ¥ n 2 2, "sign’ is
a surjective homomorphism from Sy te the group {1, -1}, and its
kernel is called Apn , the "alternating group”. The elements of Ap are
called "even' parrmutations, mnd the remainder of the slements of Sn
are called "odd". Obvisusly the even permutations forrm a norrnal
subgroup of index £, whils the sdd perrmutations de not farm a
subgroup, but a cosat of the subgroup of even ones. Sp has nl
slemments for n 2 1, and Ax has (1/2)nl elaments for n @ 2.

[For an elernent o of the opposita group Sp%P, the sign is
exactly the same, 12 the determinant of the alement o af Sy, Since
a pearmutaticn meatrix and its inverse have the same determinant,
the sarne mlements are even in 3 a5 in SptP, and signSntP—{1, -1}
15 still a hornernorphism with kernel = the even permutations)]

The usual characterization of sven permutations by
tranhspozsitions, is & corollary of properties of deterrninants.
Theoram: & pecrmutation iz even if and only if it can be written as
a product of an even number of Z-cyelas, and is add if and only if it
can be written as 8 product of an odd nurmber of 2-cycles.
proof: This all fallaws Erorm ususl propsrtiss of determinants (proved
in the Appendix), ie a determinant changes sign if you transposes
two rows, or columns, and the detsrminant of a matrix product is
the product of the determinants. So if A parmutation iz a praduct of
r tranzpositions, then its permutation matrix is a product of r

transposition matricez, so the determinant iz (-1¥7. QED.

Remark. The non abvious corollary of the previous theorem is that
although the same permutation can be written asz a product of 2-
cycles in many ways, the number of 2-cvcles is alwavs either an
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odd nurnber, or always an even nurnber. If we had sttempted to
define an even perrmutation as one which can be written az a
preduct of an even number of Z-cycles, we would hawve had to figure
out some wav to prove that an even permutation could nevar be
written differently as an odd numker of Z2-cycles.

Theorem: An r cycle is an even permutation if and only if the
integer r 1z odd. The order of an r cycle 15 r. The order of any
parrmutation iz the lern. of the lenpths of the cycine in its ungue
dizjoint eyvele decornpositiors. Ewvery permutation of odd order, 12,
whose disjoint cycle decomposition invalves only cycles of odd
langth, 13 an even permutation. In general s permutation 13 even if
and only if its dizjoint cyele decomposition invelves an even number
of cycles of wwver length, [for axarnple nonel.

proof: These are good exercizes for you. About all you need to notice
is thet digjoint cycles commuta with s=ach other, "QED".

Exerciass on the aymmetric group Sy, |these three sxercises
and the following argurnent that Ap is simple when n : 5, are from
Lang, Algebral.

Remember we compose permutations from rmight ta left. Thuas fg
means first g then f, and (123)(156) tapd: 7 to 1, and sends 6 ta 2,

Exercise #33)

(a) Let & = (i1 12 1) be & cycle, and ¥ any slement of 5. Show
that ¥oy™1 = (¥(i1) ¥{iz) .. ¥{im)).

(b) Aszssurme B parmutation J in Sy, can be written as s product of r
disjoint cyeles, arnd 1at d4: . tdy be the l2angths of the cycles, in
increasing order. Let © b2 mnother perrmutation in Sp, and let the
lengths of the cycles in itz dizjoint decormposition, in increasing
order, be #4¢, . tex. Prove that o is conjugate to T in 8 iff r = 2 and
for emch j=1 r, dj = ej.

Exercise +34)

w} Let o = {123__n) in 5. Show that the conjugacy class of o has
{n-1M elerments.

b} Shaw the "centralizer” of o is the subgroup of powers of o, ie the
arly alarmentsy of 3 that commute with o are its awn pawers,
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Exorcisns #35)

a) Show that Sn is generated by (12}, (13),...(1n).

b} Show that S5, is generated by (1 2), (2 3), (3 4), ., ([n-1] n}.

c] Prave that 3 it genarated by (12), (123..n),

d) Prove that (12}, and (234..n) generate Sp.

e) Prove that if pis prime and 1 <i ¢ p, then Sp is generated by
(1) and (123 p).

f) Show that if p is prime, then EF 15 generated by anv permutation
af period p, and any transposition.

Theoarern: [f n ¢ 3, then avery 3-cycle belongs to Ap, and An 15
generated by the J-cyales

praoof: Since (abc) = (ac){ak), where a b.o are diztinet integers, avery
3 eycle is an even permutation. For the second statement, since
every elermant of An can be written az a product of an sven number
af Z-cycles, we need only show that & non trivial product of Lwa Z=
cycles i3 a product of I-cycles. Case (i) the two 2-cycles are the
zarme (abj{ak] = id, so this is the trivial product case. case (i) the
twao Z cycles are different but not digjsint: [we just did this case
above], ie. (aci{ab) = (abe). case (i) the two 2-cycles are disjoint:
(ab¥cd} = {dcalabc). QED.

Theorem: Anv two r - cycles are conjugate in Sy, (where n » r).
proof: Since conjugacy is an equivalence relation, i1t suffices to show
any r cyele o = (mjaza’...ar) iz conjugate to {12..r). Let g be a
permutation of {1,2,3. . n}t with (i} = a1, .., ¢{r) = ar. Then

with tha uzual "right to left” convention on cormnposition, l.p_l-ﬂ"i.p =
(12..r), as you should ke able to check. Remember to check the
equality alzoc on integers greater then r. QED.,

Theorem: If n : 5, then any two 3-cycles are conjupate in Ay
prooi: Given (abe) and (123), choose any p such that {1} = m, @(2) =
b, pi3) = ¢, and of course ¢ takes the intepgers graater than 3 to the
integers differsnt from a, b, ¢, in some wav. Now ¢ log = (123) as
above, but ¢ may not belong to An. [f it does, stop, but if it does
not, then just change what it do=s to 4 end 5. le say gpl4) = x, @S]
= . Then change it zo that g{d) = v, and {5} = x. Thiz changes ¢
by composing it with one tranzpoezition, and hence changes it from
odd to even. |lotice we needed n : 5 ta da this] QED.
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Thearam: If i ¢ 5, then a non trivial nermal subgroup N of AR
muszt contain 7 3-cycle.

proci. Let N be a normal non triviel subgroup of Apn, and let o be a
non trivial element of N which fixes at least as rmany intepers as
any gther elerment of . We clatrn o 15 a 3-cycle.

Temporary convention: Juat for this cne proeof lat's work in
Zn9F, is. we will compose cycles Erum left to right.

casza (i) The disio i

gygles, Then since o s even, there raust be more than one 2-cvele,
and 30 o = {(aiazXMazndl...) Then o rnoves at lenst the four
integers a]. &2, a%5. a4. Let a5 be any other integer, and suppose o
fixes axactly k integers other than ai, az, a3, a4, a5. Since o may
fix alza a5, but not ai, a2, a%, a4, o has at most k+1 fix points.

Define T = {(a3ad4as), and consider ¥ = (rat lla~l You mavy
convince yourself that thiz elemeant belongs to N, and fixes all k of
the integers diffarent frem e, a2, a3, a4, a5 which are fized by o,
and also fixes the two other integers m1. 82. Hence this ¥ has at
least k+2 fix points. Bince you can also chack that v and T da not
do the sarne thing to a3, we ses that o1 2 To, and hence their
comrmutator ¥ iy & non trivial element of N with more fix points
than o, contradicting the choice of o

case (i) The disjoint cvcle decompesition of ¢ contains at lesst one

rcycle with r * 3, In this case. zsince the disjoint cycles commute,
wa may write thern in descending order as to zige, e, with the

longest ones first. Then we have o = (a1aza3. . ). ..). Of courss if
moves only three intagers, then o = (ajaza3) is a J-cycle, and we
are finished, 30 we may assume that o moves either & or 5 integers.
But & cannct move only four integers zince then o = (alazZa3ag)
which iz odd, hence not 1n Ap. 30 we must have o = (afaZad. J(...)
where o moves at least § integers, ai, a2, a3 and at least two more,
84 and 5 Thus sither there ara mors than twe cycles in the
decomposition af o, ar else the first cvcle has length at least 5, or
perhaps hath happen.

Either way, the rest of the arpument iz the sarne. [&, define

again T = {a3a4as), and consider (tot 1la~1l. Agmin this is ; non
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trivial elernent, since ot and ta differ on the mteger 22, and again
it belongs to W [why?]. Howewver, ¥ fikes avery element bixed by o
[why?], and alse fixes al [whe?]. This contradicts the choice of o,
and the only option is that in fact o rmoves only thres jotegers apd
7 = {misza%) iz 8 3-cvele QED.

Corallary: Although we proved it in Sp°P, the sarme theorem holds
for Sy.

proof: Wa remarked that the map p: x—+x"1 is an isornorphism
from 3 to 3P This map takes avery subgroup to itself, [and
euery I-cycle to a 3-cyclel. Hence if W is a normal subgroup in Sq,.

then N iz also a normal subgroup in 3p%F, hence N containz e 3-
cycle; or you can just copy the proof in the other direction. QED.

Coroliary: If n = 5, Ap is simple.

proof. If M 15 a non trivial normal sukgroup of An, N contains a 3-
evcle, hence sll the Ap conjugates of that 3-cycle, henee all 3 cyveles,
Thus N contains a set of generators for Ap, hence W = Ay QED.

Remarks: We now have an infinite collection of simple groups, {Apm!

n * 9, but they seem rather sparsely distributed in the collection of
all proups. Ep. A5 has order 60, Ag heas order 300, and A7 has order
2520, Wea mlso have met the simple proup G1gR of collinaation: af
tha taven point plane. This naturally makes us wonder whathar
there are ather simple groups, and if so what are they?

There are in fact faur aother non abelian simple groups of order
less than 2520, all analogous to the collineation group G1g. Since
we now know two simnple groups of order 60, the icosahedral group I
and AS, we want to know whether they are isomorphic. 'We will
show that in fact they are, and that moresvar any simpls graup of
order 80 rmust ke izomorphic to A5.

We will prove that the only possible non-prime corders up to
168, for sirnple groups, are 60 and 168. There is alse exactly one
simple group of order 16E, and there are nice ways to represent it as
a matri¥ group over a finite field.

After mbout 150 vears of work, group thaariztz have
deterrnined ail simple finite groups. Aside from the prime order
groups, and the sirnple Ap's, most of them are, or are analogous to,
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matrix groups. For example G158 15 isomorphic to the group of Ix3
matrices of determinant one, with entries in the held £7 of two
elements. [n addition to these meatris-bke groups, which form the
16 infinite farmilies of groups “of lie tvpe” after Sophus Lie, there are
2B "sporadic” finite simple groueps that don't fit into any pattern.

Jume of thaose are guite large, and have names like "“monster’
and "baby monster”. The impartance of sirnple groups far the
mn=lyvzis of more general groups 15 indicated below, in the concept of
the "simple components” of an arkitrary finite group. In a sense
sirripla graups have the zame relation to all finite groups as do prime
numbers to all integers; ie. sirnple groups are fundamental building
blacks for other finite groups. They are also the key to Galois'
criterion for solvable polynarmials,

Larmma: If & simple group G of order B0 adrmitz a non trivial
homornorphism ¢ G—+ 325 then G = A5,

Froof: Fulling back the norrmal subgroup A5, we pet a normal
subgroup ¢~ 1{A5)€ A, which must be either G or {s}. [F p~1{As) = {e},
then the induced rmnap G—+35/4A5 = Z2 iz injective, an impozsibility.
Hance - 1{Ag5) = G, and ¢ &— 45 it an isomoerphism. QED,

Propesition: Icos & A5, where Icos is the group of rotations of the
isoeahedron.

preof: Wa want to find » subgroup of Icos of indax 5, or & subgroup
with O conjugates. Fince [coz is simple of order 650, there is no non
trivial hermemeorphizm to 5 for o ¢ 4, s0 no proper subgroup has
index { 4, nor fewer than 5 canjugates. [le. there are no subgroups
of crders 13, 20 or 30, and we seek a subgroup of arder 12, or ane
whose normalicer has order 121 Since the nurnber of Sylow 2=
subgroups is odd and divides 60, and must be greater than 4, thers
are sither 5 or 15 of them.

How let x be an element of order two. Since all 15 elernents of
order £ are conjugats, the orkit of ¥ under the action of Icos by
conjugation has orbit of order 15 and isotropy group of order 4, is.
#(M(x)) = 4. Since all Svlow 2-subgroups have order 4, but lcos has
no elements of order 4, if P is a Sylow 2-subgroup containing x then
F & 23«27 1s abehan, s0 P = Ni{x). Thus sach x of order two belonp:
to only one Syvlow Z2-subgroup.

Singe there are 15 elements: of order two, and each Sylow 2-
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subgroup conteins 3 of therm, thdre are 5 3vlow Z2-subgroups. Since
Icoz mcts transitively oo thern by conjugation, the normalizer NiP)
of a Sylow Z-tubproup P it & subgroup of arder 12 and indes 5 in
lcos| Thus we get an embedding lcos— S5, via the translation action
on cosets of N(P), and thus an isarnoarphisrn I & A5, by the previous
lemma. QED,

Exercian # 36} Adapt the argument above to prove any simple
groug G of order 60 15 = to A5, [Hint: If there are more than & Sylow
Z-subgroups, prove some elarmant ¥ of ordsr two liss in at leszt bwe
of them, and then thow the subgroup Nix) would have index 5 in 31

Challange: Find a geometric proof that I = AR by finding 5 ohjects
permutead by the elaments of [, or the dodecahedral group. |For
example, there are § ways to embed a cube in a dodecahedron, such
that sach edge of the cube is a diagonal of one face of the
dodecahedron. Also the 13 axes bizecting the pairs of edpe: of an
icosaitedron, (the axes of the 15 elarnents of order 2 in ), can be
divided into o dizjoint triples of mutually perpendicular axes, such
that these triples are parmuted by the slarnents of [

Exarcizss #37) (i) If G i3 m finite cyclic group of order n, then there
exists a sequence of subgroups (e} = N T Nx-1 € ... C g - G such
that each quotient Nj-1 / Nj has prime order p,, where the primes
lpji ccocurring are precisely the prime factors of n, ie.n = T pj .
{ii) Prove the same statement for any finite abelian group G of
arder n.

Exercize »38) If & is a proup with a simpls narrmal subgroup N
such that 3/N iz sirnple, and M iz any other normal subgroup,

{i) prove M N and MN are normal subgroups different from M, N.
(1) prove M = G/'N, and W = G/M.

[f Gis any group with a simple normal subgroup W such that
&/ iz sirnple, it follows from the previous exercise that the two
simple groups 1N, (G/MN)} are determined by G up to izomerphism and
reordering. They are called the "simple components” of @ We wish
to generalize this notion te svery finite group.

Definitions: (i} If G is & non trivial group, a sequence of distinct
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subproups {8} = N © Ng-1 © ... € N1 € Ng = 4G, with each N_j
normal in Nj-1 |, is celled & pormal fowear {of length k} for &

(1) A normal tower oktained by inserting more normal subgroups
into another tower iz called a refipement of that tower.

(iii) A normal tower in which each guaotient group Nj-1/Nj is
simmple, iz called & compozition seoies for G

(iv} The k simple guotient groups {Nk-1/Nk . Nk-2/Nk-1, ... RcTAVER S
unordersd but not necessarily all different, associated tao a given

cormnposition series is called & systern of gunple components for G
(%) Two cornposition series for @ mre gguivelent if up to isomorphizm

and recrdering they have the same systern of simple components; in
particular eguivalent composition series have the same length.

Exercize #39) (i) If fG—H i3 a surjective homomorphism of groups,
and G ha: & comporition series of length two, then H is isomorphic
either to G. {e}, or to one of the two simple constituents of G.

(ii) For any normal tower of a finite group @, praove the order of G is
the product of the orders of the successive quotients of the tower.

Examplez of composzition series

The group G = 32 = 77 is simple, hence {id} C32 is a composition
series with one simple component {Zz2}.

If G = J3, then ldC¢«{123)>C83 is a composition series of lenpgth 2,
with corrazponding svstem {23, 2} of simple components.

We know G = 59 12 isomoerphic to the full isometry group of the
tetrahedron, with normel subgroup A4 isornorphic to tha rotation
group of the tetrahedron, which in turn has & pnormal subgroup of
prder 4 ganerated by rotetions of order 2. Hence there iz a
compesition series eguivalent ta {id} S22 Z2C A4C T4, with simple
quotients {2z, 22, 73, 3.

Jince A5 = leas is zimple, the anly compesition series for G - 35
iz lid) € Tcos © 35, with simple quotients {Ices, Z2}. This is the first
tirne we have zeen & group whose simple quotients are not cyclic,
kbut this phenomenan continues from here on for the symmetric
groups. Eg for n ¢ 3, the anly composition series is {id} € An € Sp,
and the system of simple carnponents is {An, 21, It will turn out
later this 1z why polynornials of degree ¢ 5 do not have a genersl
solution formaula in terrnz of radicals, as made clear by Gailois.



o2

Our next gonl, the Jordan - Holder theoremn, says any two
camposition series for the :ames group are equivalent. We need this
to conclude that the systern of simple cornponents it intrinsically
determined by the group. This is trivial for simple groups, ie groups
having a Jordan Heolder zerissz of length one, and exercise 38 proves
it for groups having a cornposition series of length two. Using that
result, we will complete the proof by induction.

Theorerm: If G has one carnposition series, then every normal tower
can ke refined to & compotition series equivalent to the given ons,

Corcllary: 1f @ has one composition seriss of length n, then svery
normel tower has langth { n, every cornposition seriez heas length n,
and mny bwo composition series are sguivalent. In particular, G
deterrrunas & well defined systern of simple component groups.

Froof: Assuma the theorsm for groups having s composition series
of length < k, and let {e} € Ny-1 € ... C N1 € d he a composition
series for G of length k. By the induction hypothesis no composition
series of length less than k sxists, so0 every normal tower can be
refined until it has length at jeast k. Thus it suffices to show that
svery normeal tower of length k iz & composition series squivalent to
the composition series above.

Jo assume {a) C Wg-1 € ... < M1 < G iz a normal tower of
langth k and consider MinN1. If N{ = M4 we are done by the
inducticn hypothesis applied to the group N1 = M3, so assurne N1
and My are different subgroups of G. Since (/N1 is simple, M1 does
not properly conteun Ni. Also, by the inductien hypothesis, Iy
cannoct properly contain My since then N1 would have a composition
series (&} C Np-q © . C N1 of langth k-1 and alse & normal tower
{el © Mr-1 € ... © M1 © N1 of length k » k-1,

Henca the subgroups MinN1 and M1N1 are both different from
My and M, and morecver both are normal in 3, Thus we can
consider this normal towar for N1i: {el € MinNy € N1, and refine it
by the induction hypothesiz to s composition sariss for [1 of length
k-1:{el = {#} € M1NNi < {#+} € Ni. where the nurmbar of
subgroups in the two families {+} and |+ +) add up to k-3,

Mow extend the anslogous normal tower far V4 {e} € MinN]
C M1, by edding the subgroups [+}, getting: {e} € {+} ¢ M1nNy C
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M1. This iz & composition series for M1 except possibly at the top
stage. But since M1l 13 & nermel subgroup strictly larger than [N1,
and G/H1 iz simple, we have MMy = G Hence M{/ANM{NN1i) &
(M1MN1)/ N1 = G/N], which is simple

Hepce (o} © [«} © MinNg € M] i3 & cornposition sertes for VM1
of length @ k-1 Since we were initislly given a normal tower {e} C
Mp=-1 < ... T M1 of length k-1 for W, by the inductian hypothesis,
the coriginal normal tower of length k-1 {e} € Mi-q < ... c MMy is
alzo a composition serie: and the cornposition series
fe} € {#} € MinN1 € M1 must have length exactly k-1, In
particular the sequance of groups (=) contains eaxactly n-3 groups,
and the requence {++} contains no groups. Hence the sequence
{el © {«) C MiNNy € ¥, i= 2 composition series for N1, and the
guotient N1/(M10M1) is simple.

Thus the gquotiant group 6/(M1NN1) has a composition series of
length 2, namely fe} € N1AMINNL) € G/AM1nN1). By exercise # 3B,
this implias that the norrmal tower {e} € M1/(MiAN1) © G/(M1nN1)
1z ah equivalant cormporition series for G/(M{NN{), and in particular
1GA{MiONL) / IMLAMINNIY 3 3/ is sirnple,

Therafare the normal tower {8} < Mp-1 & ... E My CGisam
composition series, and we now have four cormposition series for G azx
follows
(1): {e} < Np-1 < ... C N1 C@3
(I): {s} = {3} € MiNN{ C Ny C &,

(III): fla) C {«} € M3nMNy C M1 € G, and
(IV): {e} € Mg-1 © ... < M1 < G

Jderies (1) 15 equivalent to (II), and alsc (II) is equivalsnt to (1Y), by
the induction hypothesis applied to N1, while series (I[) is equivalent
to (1L} by exercise #38. Thus (1) is egquivalent to (1¥). QED.

Definitiona: (i} A finite group is solvabis if it has & cornpaosition
series whose simple cormponents are all cvclic of prume order.

{ii) A norrmal tower iz called cvchc, abelisg, or solvable if all tha
quetient groups are cyclic, abelian, or solvahble, respectively.

Rernark: By problern %37, all abelian groups sre solvable.

Exerciza #40) (i) Prove a group with a zalvable normal tower is
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solvable.
{ii) Prove Spn is solvable iff o ¢ 4.

(iii) Prove all semi direct products of solvabls proups are solveble.
{iv) Prove a group of arder ¢ 335 iz solvable if its order is not &
rmualtiple of G0,

{v) Find non solvable groups of order 60n, for every n ¢ 1,

{vi) Find the timpla componentes of & graup of seder ZBB.

{wii) Find the simple components of & solvable group of order n.

Remark: By problem »40{1), for & finite group the following
praoperties ara all equivalent: to have n solvable normal tower, to
have an abelian normal tower, to have a cyclic normal tower, to
have a cvclic cormpoesition series, 1.e to be solvahble.

Exerciss ®41): (i) If G has a composition series, and f6—+H is a

tur jactive harmomeorphizm, then H hes a composition zeriey whose
simple components form a subsystem of the zimple components of G
{ii}) What daes this say for finite abelian groups G, H?

{iii) If G iz sirnple, #(G) : 3, = homomorphism {3— 54, maps {GCAR.
{iv) If G acts trensitively on a set of n elements and #(3) does not
divide (n!/2), then G is not simple.

{w] There iz no sirnple graup of order 112,

Now we finish the list of possible arders ¢ 168 for simple groups.
Exarcize #4Z) (i) A Svilow J-subproup in & simple group G of erder
90 cannot ke cyclic.

[Show the intersection of two distinet such Sylow groups
cannot contain & generator of sither group, hence the group G
contains at least 60 elernents of crder 9, 2 slements of order 3, and
24 elermnents of order 5, hence at most 3 elemeants of order 2. Then
what?]

{ii) The non trivial elements of a Sviow 3-subgroup of & simple
graup of arder 90 cannot consist entirely of eletnents of order three.

[If =q, eithar any two Svlow 3-subgroups intersect trivially and
hence there are at leazt 80 alements of order three in 8, or else
sorme element x of order three belongs to more then one Svlow 3-

subgroup whence the norrmalizer of the subgroup generated by x has
srder at lesst 18]

{1ii) There iz no zimples group of order 90.
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Theorem: If G simple and E0Q ¢ #{3) ¢ 168, then #{d) is prime.
proof: (The harder ones are 30, 112, 120, 144, and 105, 132 are oot
entiraly trivial). The efficient way of erganizing the following proof
was suggested by Ken Derenhaut.

“We know if #{G) = p¥n, where p > n, then G is not simple. so no
prime greater than 11 can scour in ®{3)

Moreover, if #(G) = 11n, then 60 ¢ #{G) ¢ 167 implies that
11 < n ¢ 13. We need consider only n such that 12 divides n by
Fylow IIl, 2o only #{G) =132 = 11{3}4}.

Eut then 3 simple means there are 12 P11's, herece 120
alerments of order 11, and at least 4 P3's hence at least B elernents of
order 3, leaving only 4 elements far s unigue group of order 4; hence
G 15 nat sirmple after all

If p = 7 13 the highest prime occurring, and #({G)} = 7n, than
8 «<n <23, and by Svylow III we need only consider cases with 8 or 15
dividing 11, hence n = 15 or 16, is (G = 112 or 105.
If #{@) = 112 = 7{16). see ax. 43 abous.

If (@) = 105 = 7(3)5), mand G simple we have 15 P75, hence 30
elements of order 7, and 21 Pg's, hance 84 elaments of order 5, too
rany for G to hold.

If 5 1z the largest prirme dividing #{G), not all factors can ke 5
so we have #(3) = 5Kkn, 5 < n ¢« 34, and § or 16 must divide n by
Jvlow Il {since sther candidates 11, 21, 26, 31, have prime factors
greater than 5, alraady handled above). Thuz we conzider
#{G) = S{3Z} =160, so index of P2 is 5, and 160 does not divide (S0
w (@) = 5{16} - 80, sarme argument.
wi{3) = (Z5M2M3) = 180, index of P5 is B, and 150 do=s not divide (61).

#{@) = 3{18) = 90. This preof i* due to Ken Berenhaut.

Lock at the homornorphism of G into 2q0, given by G asting on
itself by left multiplication. Nots that laft multiplication by a ron
trivial element of G does not fix any alerment of G Hence the image
in 590 of = non trivial slement of G 13 2 parmutation with a disjoint
cycle decomposition with ne singleton cycles of form (n). By Sylow's
Lthagrern G contemns an element of order 2, whaoss irnage in S is
thus a permutation & of order 2.

Then the disjoint cycle decomposition of & haz no singleton
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cycles, and the lom. of the lengths of its cycles 1s 2. Hence the
decornposition of o must be a product of 4% disjoint 2-cyeles,
whence o 15 an odd slerment of 5o, (it is & product of Bn odd
numker of 2 cyceles). Hence o dos: not belong toe A9Q. Since G has
order » £, G 1z not simple by exercize # 27 above

wid) = 120. Thiz zolution iz due Lo Gang Tu.

Note 120 = 15(8) = (3)(53(23), so consider the groups P3, Pg, Pz.
If Gis sumple there are 10 P35 and & P5's, snd 15 P2's. First wa
prove there 1z an element of order & 1in G. 3ince there are 10 groups
conjugate to P3, the index of the normelizer of F3 15 10, so the orddr
of the normalizer W is 12. Now conjugation of slerments of P3 by
elernents of N carries thern back minte P33, hence gives an
automorphism of P35, le taking each slement of N to conjugation of
alarnants of P3 by that element, givey a mep from N to the group
Aut(Px) = aut(¥x) = F2.

Hence the kernel of this map, the elements of N that conjugate
every element of P3 trivially, has order sither 6 ar 12, Now an
elernent of N conjugates elements of P3 trivielly iff it commutes
with mll of themn. 9o if we take an element of order 2 that cornmutes
with all elernents of P3, we can multiply it by an element of order 3
irn PX and get an elernent of order 6 in @ Thus we have gur alarmsnt
of order & in G.

Since there arse & PE's, if we sparate an them by conjugation
we gpet 6 non conxtant mnap of Ginto 35, which iz 1njective if G 1s
zirnple, hence our element of order 6 from G goes to an element of
order & in 55. Now we know also that this map goes entirely into
Ag. It only reraains to show that Af doss not contain any alaments
af arder .

The digjoint cycle decompozition of an element of order 5, must
be into dizjeint cyeles such the Lo, of theiwr lengths iz 6. Since
there are only G letters to use, sither there 15 one cyele of length B,
or two cycles, one of length 2 and one of length 3. But neither of
theze alernents can ke even. QED.

1f 3 is the highest prime cocurring in #(3), and #(3) » 60, then
* {3 cannot divide n! when n = 2, 3, or 4, so we must have #{3) =
2E35, with hoth r > 2 531 But r» 2, implies s < 3, and s 1 implies
r<> S0 we have toconzider s = 2, and r = 3,4.
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#0321 = 2332 = 72, a case dane in the class notes above.

»#{d) = 2432 - 144 This one can be done by the zame
trnethod cuthned m the exercize: for 90, 1e find a subgroup of small
index which has form N{H) for some appropriate subgroup H of P3.

If there 1= more than ane P3, there are 4 or 16 of thern, and 4 1= cut
zince 144 does not divide (48, 1f there are 16 of thern, sach of order
O, sand if eny twao of them meet anly in the identity, then the union

of all 16 PT's contains at least 128 elernents of arders 3%
This leave: exactly 16 more elementz, hence only one P2 5o
thers rrust ba twa P75, say PP and P that mest in a4 subgroup H of

arder 3. Woreover, since #{P3) = 32, we know all P3's are abelian.
Heanca the 3 elernents in H comrmute with the other 6 slamentz in
auch of F'. P Hence F'UF" € N(H), so #*{N(H)) > 14, and 9 divides
#{[{H})

[f #{N{H}} = 18, then P iz narrmal in N{H) of index 2, N(H}/P'
haz order 2, 5o any element of order 3 in N{H) is in P, ie. then P"
would not be there 3o #({N{HY is at least 36, and thus has index ne
more than 4, 20 tinca 144 doas nat ditride 41 wa ars done. (Ie if tha
normelizer 15 5 we are dane, zince then H ix w normal subgroup, and
if M{H) is & proper subgroup of index less than 5 we are done by our
ususl argurnent permuting its cosets by translation).
we have them alll

510) Categories, functors, and natural transformations

We have encountered several natural constructions which
replurr ona mathematical object with ancther, not alwayz of the
same type. For example, we zan farget the group structurs on &
group end regard it meraly az a zet, thus replacing a group by & set
The other aspsct of this construction is that a homomorphism of
group:s can be regarded as a set map on the underlying sets.

The fact that the construction replaces not only one type of
ohbrect with ancther, but alio a mag of the first type of object with
a rmap of tha naw type of abjects, is part of what we mean by
saving the forgetful construction is a "functer” from groups and
harngrnarphiisms, to sets and set maps.

The rest of the axiormns for a functor say that identity maps go
to identity maps and cornpositions go to cornpositions. As an
example of & functor in the other direction, from sets to groups, we
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can replace a set by the group of bhijections of that s=t. Not every
function betwseen setz 5, T yields a homomorphism between Bij{3)
and Bij(T), but if we consider cnly bijective functions hetween 5
and T, composition with such bijections does yield homomorphizms
betwesn Bj(S) and Bij(T).

IVlere precizely, if £5=T 1z 8 bijection of etz then we pat A
hornornorphisrn fa Bij{S)—Bij(T), by setting f,{ag) = (fegef 1} Thus
"Bi]” iz a functor, from zets and bijections, to groups and
lizarnerphic] hornornorphisrns,

There iz another important functor from sets to groups that
assoclates a homomorphism to avary set function, nemely the “free
group” functor. Let 5 be any sat, {a,b,c. .}, thoupht of s an
"alphabet” of letters, finite or infinite. Consider all finite "words®
spallad with those letters and with their "inverse letters

{a=1 k=1 ¢"1, .1 & word then is u finite sequence such as bbb~ laac,
‘We multiply twe words by juxtaposing them, eg. {acbhh™ 1¥cbdac1)
= acbb lchbdac™1l The identity is the smpty word™ . Since we want

#%"1 and x"1x to equal the identity, we sllow canceling of such pairs
af $ymnmibals. We call & word "reduced” if there are no adjecent
syrnbols of farm xx~1 or x71x, ie if no cancellntion is possikle. {(We
agree that (x"1371 = »]

Ukviously any word can be transformed into a reduced word
by repeatedly canceling any pairs of form xx~1 that occur in the
word. The free group Fr{3) will consist of all reduced words, with
the aperation being juxtaposition followed by reduction. Although
Juxtapesition af wordsz iz clearly azzocimtive, 1t 17 not 5o Clear that
thiz heolds for reduced words, since cancallation can oftan ba dana in

rrare than one way. The following nice argument is from M. Artin,
Algebra.

Lermma: Every word hes exactly one reduced form.
proof: (By induction on the length of the word}. If a word is
reduced there 15 nothing to prove. If not, there iz at laazt ana pair of

form xx~1 cccurring in the word. We claim avery raduction of the
word can be obtained by canceling thiz pair first. (The result then
fellews by induction applied to the length of the resulting zshorter
word.,) Any reduction of this word must invelve ehiminating this
pair at sorme tirne, by canceling at least one of the symbols. If the
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pair itself is at any time, the same reduction iz achieved by
canceling this pair first and then praceeding with the other
canceliation:

If a1 tha athar hand the hirst cancellation invelving this pair

canceis only one of the svmbols, say the symbdl %, then at that

point tha waord must look like . x~txx~1_ ., where the first two
svimbels are canceled. But the same result 1z ghtamed at this stage
by canceling insteed the zecond two syrnbols, ie by canceling the
original pair. This iz the previous case. QED.

Corollary: Fri3) is 8 group.
vrocf. We have inverses and an identity and the previpus lernrna
implies azzociativity. QED.

Equivalently a word can be represented by a finite sequence of
the symbols aj¥), where a) is an element of & and rj is a non zero
integer. Here the word is reduced ff whenever aj'j ax'k are
moljecent Jetters then j # k. For example faz)2la1) L{az) Blag)” iz m

reduced word. Reduction i3 performed by applying the usual laws of
exponents to adjacent ococurrences of powers of the sarne letter.

Given any set map F5—T of two sets, the associated group
hemomer phism between their free groups f» FriZ)—Fr(T) is defined
by sending & word spelled with letters from O to the word spelled
with the correasponding letters from T For example
fellaz)elal1) 1{az)"Blag)3) = [Haz)ISIHa )" LIHax)]"BlHag)]d.

The free proup has a very nice property: it is extremely sasy to
define a homeomeorphizsm from it to eny cther group. In fact any s=t
map from F to a group G extends uniguely to s group
homomorphism from Fri(3) to G, using exactly the same definition as
Just given for the hormnornorphisin to Fri(T).

Theorem: If G 13 any hnite group, there is & zur jactive
homomorphism from = free group onte G

proof: Let the set 5 = G, [actuanlly 5 = the "underlying ==t" of Gl. The
identity function S~ G extends to & unigue hormornorphism which is
surjective, since 5 already rmaps onta @ QED,

Cor: Every hinite group iz w quotient of & free group on & finits set,
procf: Thiz follows from the theorem above by the first
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fundamental homormorphism theorem”™. QED.

Rarnark: Ino thiz theosrern we only nesd to take for & a set large
eniough to map onto a generating set for 3. For example if p 1z prime
we can take a two element set {a. b}l for 3, and map Frila,bl) onte Sp
by sending a to (12) and b to (123..p), according to our homework
problern that these generats the symmetric group Sp. To appreciate
how large and cornplex the free group Fri{e,bl) on two generators is.
note that every finite group in the world embeds inside one of the
graoups Sp. That rmeans that the differant quotisnts of the one group
Friia b)) contain subgroups isormorphic to avary finite group.

We mlso don't need to assume G 15 finite 1n the previous
theorem, or even finitely generated, if we consider free group: on
infirnita zatz. This shows the potential of using fres groups to study
arbitrary groups The method of expressing groups as guotients of
tree groups i1z callad tha meathad of "generators and relations”. [t s
guite analogous to the relationship betwesrn finite fisld sxtensions
and polynomial rings which we will use presently in our study of
Galois theory.

As mentioned above, the three conztructions we have given
{and all functors} satisfy two properties that are crucial to their
dzefulness, namely they preserve both identity maps: and
compositions Thus for the forgetful functor, the et meap assooiated
to the identity homomorphism of a group G, equals the identity map
on the underlying set, and the et rmap azzociated to the composition
of two homomorphisms, is the composition of the two set maps,

ln the case of the bijections funetor, if £:.5—+35 is the identity
map of 3. then f. Bij{3)— Bij3) is also the identity homeomerphism
of Bij(5), [since idegsid™1 = o for avary o in Bij(8)]. Morwover, if
f3=T, and gT—= 1), are two set maps that can be cormnposed, then
(gefle = gevfe Bij{I— Bij{M, since (goflela) = (geflegelgsfi~1 =
(gefiews{flog=1) = polfogoi-ljog~1 =gaifsla)), for all ¢ in Bij{S). You
can alsc check readily thet the free functor from sets to groups
satizfims these two fundamental properties.

Thess two axiorms vield the fallewing very important result,
{ard trivial to prove), but first we must be very clear about the
defimition of the vord "isomarphism”.
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Dafinition: In any category, an isornarphism from X te Y, 15 &
rorphitrn £X—Y that has an inverse morphism g7=— X, [e fX—Y
iz mn izornorphism iff there iz a morphism g¥— X such that the two
compositions fgr— Y and gf:X— X are both idantity maps.

Theorern: Any functor always takes izomarphisms (of one type) to
izarnorphisms (of possibly another type).

proof: If {13 an isomoerphism, say of sets, then f has an inverse map
g with the propertiez that feg = id, and gef = id. If {4 and gs are the
maps, say of groups, associated to fg by some functor, then by the
two axioms we have feege = (fegle = ide = id, mnd gu=fs = (gefla =
idy = id. Thusz f; and g3 are alzo mutually inverse group
homomorphizms, and hanca both are isomorphisms. QED.

Warning: This theorem is not true without the correct dafinition of
1sormnmorphism, as given above. |n topelogy for instance, a continusus
map can be bijective without being an xamaorphizrm.

For instance there iz a continuaues bijection from the half open
interval [0,1) to the unit circle taking x to @27 put this map will
not induce an 1someorphism of fundamental groups. Thus 4
"homeomorphism” (topological isomorphism) is defined as a
continueus map with & continuous inverse. not as a bijective
continuous map.

Cor: Isomorphic groups alway:s have the same number of elernents,
proct. The forgetful functor tekes a group 1somorphizsm ta a
bijection on the underlying s=ts QED.

Cor: Two bijectively eguivalent set:z have izarnorphic groups of

b jections.

proof: The Bij functor takes a zet bijection to a group isemerphizm
af their proups of bijectiocns. QED.

Cor: The group of hijections of a finite set 5 iz isomeorphic to some
syroarmatric group Sn.

prooi: A bijection from 5 to a set of form {1,2, . n} yields a group
wornorphisim frorn BijiS) e Bij(il,2,. .0} = 5. QED.

Cor: Two free graups on the sarne nurnber of letter: are isomorphic.
proof: Applyving the free group functor to a bijection between their
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sets of lstters yields an isnomorphism of the corresponding free
groups. QED.

Another functer, this timme from groups and isomorphizm, to
groups and isormorphismms, 15 the "automorphism” functor. Thas
mrzociates to & proup G the group Aut{G) of group automeorphisms
from G to itself. Az with the bijection functor of sets, not every
group hornornorphisrn G— H yields a group homomorphism
Auti@) = aAut(H), but isornerphisms fG2H do. [e if iG3—H is & group
isornorphism, we get, again by conjugation, an Lisomarphicl
hormornorphism Aut{@ — Aut(H) teking o to o. = {feaef" 1) As
befare, if id:3—3 iz the identity homomorphizsm of G, then id. = the
identity homomorphism of Aut(G), and (f*g)e = fasg.s.

Cor: Isomorphic groups have 1somorphic autarnoarphism groups.
proof: The functor Aut takes an isomorphism [ betwean G and H to
an isomorphisrn fu betwean Aut(G) and Aut(H) QED.

Cor: The groups £4 and I2xf2 are not izomorphic.

proof: Check mz exercize that Aub{Zg4) & Fz, and Aut(Fz=22) = 33,
Jince theses automorphism groups have different numbers of
elements, they are not isomoerphic, and thus the ariginal groups are
not isomorphic either, QED,

Remark: Even whean G it abslian, Aut{G) may oot be.
Challsnge: Compute Aut(Zn) for every n. Iz it always abelian?

In prder to speak precizely mhout constructions taking one type
of mathematical chject and map. and changing them inte {(possikly)
arcther type, & word has besn coined for Lthe collection of all
rnathernatical objectsy of & given typa, a "eatepary”. The collection of
all groups and their hemomorphizms i3 called the category of groups,
and the collection of all sets and zet maps is cdlled the category of all
sets. 5o a category consistz of two collections, livst the callectian of
all "ohjects” in the catepory, and secondly the collection of all
‘orphisms” or Trmaps” in the cAatsgory.

Each group G constitutes one chject in 4, the category of
groups, and for sach ordered pair (G,H) of okjects inn @, thara it ana
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sat of map: Homa{GH) = { all group homomorghisms {:G— H},
Sirnilarly, in the category 3 of sets, the collection of chjscts consists
of all sets 3, and for each pair of sets 5, T, thers is one set of maps,
Hornal S, T = {nll functions £3—T}.

In topology, one considers the category T of all topological
spaces and continuous maps, 1.e the objects mre the topological
spaces X, and there is one s=t of morphisms HoonT(X,Y) = {all
conktinueous maps F2X— 7} for each pair X7 of ohjectz.

There are alzo two axioms for categories, namely for every
ob ject ¥ there must be an identity morphism 13 in Homi(X. X)), and
whenever three objects X Y, 2 exist in a category, cornposition
must be defined for the morphisms as {cllows:
Hom{X,Y)=Hom(Y,2) + Hom(¥,2}). le vou rmust be able to compose &
morphism from X te Y with a marphizsm from Y to Z to get a

morphizrn from X te 2, and of course cornposntion rmust he
mzzopciab)jure

Remarks: (1) Although the defirution of a category may seem
somewhat trivial, contaming na naw ldeas, remember that even
when & definition only award: a narme to a concept which already
axistz 1t serves notice that the concept has been found to be
impertant. The delinition of category suggests that it is useful to
consider & whole collection of abhjects of a sirmilar types, that 1t 1=
important to consider sunultanecusly their morphisms, and suggests
the correct definition of somorphism. We have really only defined
cateporiss in order to talk about how to relate diffarent categoriss,
1e. to discuss functors.

(ii} We are particularly intaratted in compacing functors, via
certain homomorphisms of furnctars, called natural
transformations”, and isomorphisms of functors called "natural
rquivalences” mg we will discuss in more detail in the final third of
these notes. For instance sach group @ can be rmade abelian, by
meodding out by the smallest normaeal subgreup containing all
"comirmutators” [products of form mha-1lp-1}

Doing this to any group velued functor turns it into an akelian
group valued functer, and defines a natural transformation between
the two functors. In topology, it is proved that the "first homology”
functor 15 sguivalent to the "fundamental group functar made
mbelian”, ie H] 2 wi{/{iconmutators]. The free abelian group functor
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defined below iz equivalent to the free group functor made abelian.

The farnous result in topology, due to Brouwsr, that a disc
cannot be retracted onto its boundary circle, 1z a fawvorite for
illustrating the uze of functerz in topelegy. Suppose cne could
‘retract’ a disc onto its boundary circle continucusly. That would
mean the existence of a continuous function g:DE—Fﬂi (where
DZ=unit dise, 31 = unit circle) such that the restriction of E to the
unit cirele it the identity. Thus the composition (gef) sloap2asl s
the idantity where £l D2 is the inclusion map of the circle as the
boundary of the dise. Applving te thiz composition any functor F
from topolopical spaces to groups, implies that the composition
(gef)s F(S1) 2 F(DZ) = F(81), must be the identity group
hermemerphism of the group FiSL).

Hence if there were a functor F such that F{31) z [0} while

F(DZ) = {0}, we would have & contradiction. since vou cannat factar
the identity map of a non zero grouwp through the zero group!
Indeed these of you who have studied topology know several
functors with these properties, such as the fundamental group
functor w1, and the first homology group funstar Hi, bath af which

taks DZ to {D}, and 51 to Z.

Jurnrary: To recap, a functor F, say from groups to sets, associates
to each group G in G & set FIG) in 8, and to any two groups G, H in
4, a map from the coliection of homomeorphisins Hom@(G,H) to the
collection of sat meaps Homs(F(G), FIH)). Moreover, if we have three
groups G, H, K, and two homomorphizms f@—H, and gH—=K, whizh
can be composed to yvield m homomorphism (gef).G— K, then the two
corresponding set maps Flg+f): F{G) = F(K), and FiglF(f}: FiG)—F{K),
must be the same. Further, if 1G6—4, is the identity
homomorphisrn on G, then F{13) must equal 1pig) FIG)—+F(3], the
identity sat map on FIG)

That':z a|l there 13 to functors: cbjects go te cbjects, and maps
ED to aps, 50 that wdentitiaz go to identities, compositions go to
carnpasitions, and hence somerphisinz go to isornorphismas.

Remark: Jome functers change the direction of maps, so that if
fX—=Y, then FUf) FI(YI—=F(3), and Flg«f) = F(flsF(p). Such functors are
called "contravariant”, while functors that do not change direction
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ares called "covariant”.

Let's loock at one more commenly used "free” functor to groups,
the "fres abelian group” on a piven set. We appreach it hackwards
instead of giving the construction and then stating the properties it
has, we first state the desired properties, and then give two possible
constructions. The rmoral is that the properties a thing heas are more
important than the particular choice of construction, provided sorme
gonstrucation is possible.

Definiticn: Let S be s set, such as & finite set 5 = {ay, »2,.., ayl. By
analogy with the mapping property satisfied by the previous free
graup canstructian, & "fres abalisn group on the set 5° should be an
abelian group Frabl3) containing the set 5, and such that suvary st
function S—+G, from 3 to an abelisn group G, should sxtend uniguely
to a group hemaomaorphism Frab(S)—G.

IVMiore generally, we reguire only an injection 5—Frab(Z3), and
that for any set map f5— 0 there 13 a unigue group hememorphizm
Frab{3)— G such that the composition 5—Frab(3)— G equals f.

Exercize w43) If a construction exists satisfying the (more general;
property above of a free abelian pgroup, prove it satisfies the axioms
of B functor from sets and functions to (abelian) groups and
hornomorphisms.

Thecram: Free akelian groups Frak(3) exist for any set 2,

procf sketch: Assume for simnplicity S5 = {ai, a2, an) iz finite, We
can give 8 construction anslogous to the previous one, and then
maks it abalian. [2 we can consider words of forrm (a1)71 (aZ)72...
{ap)to, and multiply by reasrranging the latters until all of the sama
letters are ad)jncent, and then using the exponent law to simmplify.
For exempls, (1)1 (az)F2.  _{apiTn} - ({1151 (a2]32 . (apni®n} =
(a1)T1*%1 {(mz)72*%2  (ap)TR**n. End of sketch.

At &D AXErcize we give a yecond construction of free abelian
Eroups, vsing product groups.

Exercize %44). If 3 = {a1, az,.., an}, prove that the product ZT =

Zxfx =X (of 1 factoers]), together with the injection {§=I0, (taking
a; to the n tuple &5 = {(0,..,0,1,0,...0) having 1 in the jth position, and
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0 elzewhere}, 15 a fres abelian group on 8. e check the mapping
property for fre: shelian groups is satisfied. |that is, show how to

dafine tha Eroup hgmumgrphism ne £ =G, agzaciated withh m zet
map p S0 ko an abalimn group G, and show yaur @, is the unigue
group map with qaef = |

Exercian #45): If J is anv set, possibly infinite, 1ot F be the set of
thoze functions « 3= Z swhich heve non zero vahies only at a finite
number of points of 3. Show thet F, with pointwize addition of
functicns, 15 a free abelian group on the set 3§ QED. for thecram.

Terminology: A subzet on which an abalian group iz free, 132 called a
baziz of the (free abelian) group. In particular, the s=t {ejl in Ihin
Ex. #4G 13 called the "standard basis™ of #8.

Rernark: [f S = [ay], a2,.., an!, note that the "exponential map”
taking (ri,..rn) to the "word™ (a1)01 {(az}T2 . {ap)'n is an
isormorphism from E# &+ ..rZ to Frab{3} as it was defined in the first
sketech of proof of the Theorem given ahove.

Looking ahenad: Az we begin aur study of "zoalvabihty” af palynormial
equations by formules involving radicals, we study the structurs of
“fields” generated by the roots of polynarmialzs. We will use an
automorphism functor associating to & nested pair of flelds their
‘Galoiz group”, sutormorphisms: of the larger field which restrict ta
the identity on the smaller fisld 3ince groups are sirmpler than fisld
extensions, we wiil gain an advantapge in aur study of fields and the
polynomials Wwhich give rise to them.

The amazing triumph of this togl, due to Galois hirnself, 15 its
complete success in resolving the gquestion of solvabihity of
polvynemial equations: by radicals. The Grlos group of = polynornial,
ie. of the field generated by ity roots, determines completely
whether thars it an expression for the roots of the polynomial in
terms of the coeflficients of the polynomial, using only radicalz and
rational arithmetic. Next we discuss haow this warks.



