845 potes, part one; "Linear Algebra™. Modules and Matrices
(copvright 1996 by Ray Smith)

Introduction: We have seen that one cen study field extensions
very profitebly by mears of their Galois groups of automarphisrms,
end in particular that the Galois group of an extension of k of degree
n is isormnorphic to a subgroup of the "hinear” group Autk(k?) of

isornorphisms of the vector space k7. 1n thiz part of the course we
study self homomorphismms, or "endomerphisms” of arbitrary vector
spaces over fields and of module: over rings. These endomeorphisms
are no longer always isomorphizms, hence form a ring rather then a
group, but it iz again fundamental to classify them up to "similarity”
(the anelog of canjugacy). The extension fram = field to & more
gencral ring acting on an sbeliap group add: gresatly to the
appleations of the method. For instance an abelian group which
adrruts an action by the polynamial ring kX is equivelent to a pair
(W, T) conmsisting of & k vector space ¥V apd a linesr transformation
TW—=V Thus the generalization lets us analyze both T and V.

In particular, a madule thecretic generalization of the decomposition
theprem for finite abelian groups will allow Uz to claszsify lineay
transformaeations of finite dirmmensional vector spaces, especially those
over €. in terrs of thewr "rational”, ar " jordan” normael forms. These
cenonical forrms provide good representative: for conjugacy clazzes

in the linear graup Autk (kD) and of similarity cleszes in the ring
Endii(kD), herce cormmputing thermn mekes it possible to decide when

tweo elernents of Endg{C] are similar te sach other. In particular
we give several criterie, called "spectral theorems”, for a matyix to
be similar to the simplest possible matrix, a dmgonal matrix.

Vector space and module theoretic metheds are fundermental tools in
differentinl eguatians, geometry, and topology. Within the field of
algebra, "linear group:” over finite Lields provide new examples of
finite simple groups,
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Terminology: In these notes "non eabelian” ar "non commutative”
may mean not necessarily akelian', or not necessarily
cormmatative '



Suggestion: This iz & good tirme to go back and reread sections 510,
and 515 im the 843 nates, ot free sbelian groups and vector spaces.

§1) Fundemental theorem of finite ebelian groups revisited,
vie metrices and linear maps,

Decomposing finite abelian groups inte s product of cvelic groups last
quarter seerned as if it should have been easy, but it reguired a
slightly tricky argument to eliminate sverlaps between the cyelic
subgroups which generate a given group. This process of
iransforming given generators into “independent” ones is
unavoldable, so we want to give a systematic procedurs to sirnplify
lt. The new rmethed will exploit the Euclidean algorithm, and will
simultenesusly prove the decomposition theerem for finitely
generated, not necessarily finite, abelian groups, and for firitely
generated “rnodules” over any Fuclidean domain, A slight variation
Yields the decornpesition theorem, but not s cormputational
procedure, also cver any pid. These generalizations will Blve easy
proofs of the standerd existence thearems for normal forms of
rmatrices for limear transformetions of vector spacez {(hut will nat
render easy their actual calculatjon)

We will begin to write most of our abelisn groups mdditively, to
make rmore netural the anslogy between abhelian groups and vectar
spaces. Recall that if (M, +) iz apn akelian group, then it 15 possible to
rrultiply elernents of M by integears, where for # in M, and n in Z*,
nx =kt x v+ x {sum of n terms), end (-nlx = n(-u) = -x -%..~x (n
terms). Thus there is @ nature] action on M, by the ring 2. This
multiplication is distributive over addition in M, hence gives a group
homomerphism of M to itzelf, and the mep taking sn integer n to
‘multiplicetion by n” defines a map Z—End(M}. Since multiplication
15 also distributive over addition in I, [(n*mlx = nxrrmxl, and
assaciative, [{nmlx = nimx}l, this map Z—+End{M), which takes n to
n+dd, 17 a ring rmap  Jo viewing an shelian group M as a I-module
rmesns expioiting the action on M of the subring of End{M) generated
by the identity endornorphism. Adventages of this approach includs
the use of integer metrices to represent hamomorphisrms, and the
realization that cther more exotic rings, such as the nan
commutative ring End(M), rnay act interestingly on M as well,

[f x1,. . xn are elements of M, a "linear cormbirnation”™ (or a 7 -linear
combination) of these elementz iz a finite expression Leix), with o g
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i 7. This is an elernent of M. When we uze just the word "map’ for
s function between two groups you mey assume it is a group
hormomorphistn; similarly & “map” between two rings it a rimg
hornormarphistn, We will sometimes denote the product TTj=1, m &

of m copies of the ring A, by AT

Definition: 4n akelian group M is “fipitely generated” iff ther= iz &
finte subset 5 = {xy,....xnt af M such that every element of M iz &
linear combination (not necessarily unique) of the elements af J.

Defimition: A& cycho group is & group which is isomoerphic to a
guotient of # by & subgroup.
Neate: This is equivalent to our old definition.

Definition: A subset 3 of 211 iz called a "hasis” or “frae bazis” 1ff each
element v of ZP hes a unigque expression As Loxi with «j in £.

Recall’ An abelian group M s free on 3CM iff gusry set function
8- G, from S to an sbelian group G, extends uniquely to a group
hermarmor phisim M= G.

Exsrcize #121) Prove: 20 is “free” ocn » subset 5 = (a1, . xplCZn ff

S ix @ bhasziz for 1.

Exercise % 122) Prove: & subset ix1,...%nlCZ™ is a besiz iff there is

an someorphism @ 0= 20 with plej) = xj, for all j.

Fumdamental theorem of finitely generated abelian groups:
Theoremn: & men trivial finitely generated abelian group M s
isarnorphic to B unique finite product of cyclic groups M =

(ZF » TI; (Z/ni}} where for all} (if any exizt), ni ¢t 2 and ninj+1.

Remark: The unigueness means that the sequence of integears nj
and the number r of factors of Z are uniquely determined by M.
The number ¢ is called the “rapk” of M, and the integers nj are
called the "inveriant factors” of M. Thus two finitely gernerated
ahehian groups sre isermorphic iff they heve the sames rank and the
came inveriant factors. The rank of M should he thought of as



analogous to the dimension of a (finite dimensionel) vector space,
but the invarient factars are something a vector sprce does not
have, becauze unlike 7, a field has no interesting quotients,

First we prove the unigueness, assurning a decomposition exists.
Lernma: Two finite praducts of infinite cyclic groups are isormorphic,
I =z ¥Y jf and only if m = r.

procf: U M = ZT0 then ZM = (2Z)M, and thus M/2M & (2/2) has
order 2T wrhere m is the numkber of copies of 7 in the product M.
Hemce of M = ET1 2 FT = N then MAZHM & N/ZN, 2o these two finite

Ereups have the same crder, 211 = 25 Thus rm = . QED.

Corollary: Rank(M) is well defined at least if W = ZFr,

Definition: If M is an abelian group, let t{MICM be the "torsion
subgreup’, H{M) = {thase x in M such that nx = 0 for some n = O},
Thus x i3 in H{M) iff x generates m finite cyclic subgroup (x)C M.

Note: If Ml = (ZF « TI; (Z/nij)), then M) & TI; (2/nj), and MM =
ZT. Thus rankiM} = renk(M/LM) = rank(2¥) = r. This proves the
rank of Ivl is well defined for anv finitely generated M. Sirnce
determunes t{M] = 1T; (Z/n;), the uniqueness of the invariant factors
of M fallews from the earlier thearem on the unigueness of the
decernpasition of the finite abeliap group t{M). By the earlier
theorermn, instead of reqguiring ni to divide nj+1, we= can choose the
rmoduli nj te equal pifi, for some (not necessarily distinet) primes pj,
and agaln we have unigueness of the nj.

QED. for unigueness.

HKemarks on what is unigue end what iz not: We have said
thet in the decomposition M 2= (ZY « TTj=1 ¢ (Z/n))}, it is the
integers r and {njl which are unigue, provided nilnj+1. The choice of
iznmaorphism itself however is net unigue, in particular there are nme
distinguished sehgroups of M corresponding to the individual factors
of the product. In fact there is no special subgroup of M itomorphic
ta Z¥, ie. there is no distinguished subgroup of IV corresponding to
the "free part” of M. For example, the map @ Z <(Z/21= F=(Z/2)
where @{a[bl} = {a [a+b]) is an isomorphisrm with inverse ¢~ 1lia b)) =



(s.[b-a]). Thus the subgroup Zx{D) could be replaced by the subgroup
Z:(1,[1]) in the decarnposition of M = Z2+12/72). Hence either Zx{0} ar
Z-(1[1]) can ke theught of as the "free part”. Another wiy to sed
this is that the map TZ~(F/2} = where wig D]} = a, has more than
one right inwverse. le in sddition to the obvious cholce s~ (a,|0]},
plm) = (alal) is also a right inverse of m. From our general theory of
splitting meps, every right inverse gives s splitting, so there is rnare
than one way to split off & copy of Z inside of Z#{Z/2). Thus in the
decompuosition M = (27 x Tli=1 ¢ (Z/ 1)), neither the individual
copies of Z, nor the whole "free fector” ¥ correspond to distinguished
subpgroups of VL

wWhat aobeut the finite factors? Recsll that in s finite abelian group,
any elernent of maxima] order splits off a cyelic summand, so in
(Z2/21x(Z74) we could split off the subgroup generated by {[1][1]) as
the copy of 2/4, instead of using the subgroup {|0]lx(Z/4) generated
by ([0111]). Thus in our decompasition M & (ZT » TTiz1 g (Z/nih)
there is no special subgroup of M jzomorphic to Z/ng, for instence,
mssurming s > 1. However the entire "torsion part™ Tliz1 . s (Z/ni) of
the product dees correspond to a unigue subgroup of VM, namelw the
"torsion subgroup” t{M} = {elements of finite order in M}, Thus there
12 at least one distinguished subgraup of M independent of choice of
decomposition, namsly (M) = the largest finite subgroup of M,

There are in general however, cther specisl subgroups of M which
are naturally determined, independent of chaice of decomposition,
namely the Sylow subgroups Mp of t{M). The subgroup tiM) breaks
dowrn neturally further into the product of the subgroaps Mp,
although these do not eccur in the standard decornpozition above of
t{} 2 TTi=j. s (Z/nj) where nilni+1. As remarked last gquarter, one
has two choces in decornposing & finite akelian group: one cen either
meake the standerd desarmposition of the group as above, or one can
first make s prelininary decompesnition of the group inte a product
of Sylow subgroups, and then make the standard decomposition of
each Sylow subgroup seperetely. The second approach is sornetimes
called the "prime power” decomposition,

To surmrnarize, s finitely genecrated abelian group M has a natural,
uniguely determined, torsion subgroup tiM) such thaet MADL) iz &



free mbelian group. M haz many free abelian subgroups N
izomerphic to the quotient M/t(M) and such that NxwM) & M, but
there is ne natural choice of NCM. The tarsion subgreup t{VM) hasz =
unigue seguence of “invarient facters” (n1,..ns) such that V) =
Ti=1..5 [Z/n5), but there are many choices of the actyal subgroups
M2HNi = 2/n; of M corresponding to the facters in this decomposition.

The torsion subgroup has 8 unigque coilection of Sylow subgroups
MpCtiM), for primes p dividing #(t{M}) sueh thet (M) & Mp My,
These Jylow subgroups ere not generally cyelic however, so to
decompose t{M) further into s preduct of cyclic subgroups, one must
make a stendard decormpoesition of each Mp. For each Mp, there are
in general many ways again to do thiz. le although the orders of
the cyelic subgroups of Mg which correspond to the factars in a
standerd decomposition are alwavs the same, the subgroups
thernselves can he ¢hozen in rmany weays.

Froof of existence of the decormposition:

smnce M ois finitely generated, exercizse #1172 belgw impliss there iz g,
surjective map o 2™ =M which has & kernel ¥ = ker{alCZM sueh
that M & ITM/K. We need to know that K is alsg finitely generatsd,
but it it easy to prove something stronger.

Lermnma: If KEZ™M = M is a subgroup of a finmitely generated fres
abelinn group, then K is also fres, finitely generated, and

ranki{kK} ¢« rank(W).

proof: We usze induction on the number of factor:, To get started, it
13 crucial that  is a pid, le if KCZ then either K = (Q) ar ¥ = n?
= £, for some nz(. So KCZ iz free of rank 0 or 1. Now assume the
theorern for & product of at most m-1 factors, let M = I mnd

K<€ M Wetry to split E between the first m-1 factors and the last
cne. |le. consider the projection map ZM— 7, taking (x1,.. k) =
*m. and denote by o itz restriction to K, o ¥—+2. Then Irnfo) =
g{MICZ is either (0) or = 2, snd we have a surjective mep

o K—=Imig). if (K} = (0} we are done by induction since then F is g
subgroup of the product of the first m-1 factars, so we mey esfiume
a(K) = Z, and that we have s surjection c K— 7.

Claim: The map o splits, so that ¥ = ker{aix2.
proof: By our general splitting criterion (lernme 3, 518, B44 part 23



we only need a right inverse ta ¢, i& a group mep ¢ 2 7+ K such that
geg = idZ. Such a map ¢ iz extremely eazy o define because 7 it
such a nice group, iz a free sbelian group. Since g iz surjective, we
Just pick any element % of K with a{x) = 1, and define p{l) = x. This
axtends unigquely to e group map g 2 2 K with pin) = nx. Since
(oeaglil) = alwlll) = olx) = 1, we have (osgling = olpin)) = alnx) =
rraix] = n, for all n. QED cleim.

Mast sinee o gplits, we have K & ker{o) x I, and since ker{a) iz m
subgroup of 2" 1, by induction ker(a) is = 10 & product of § m-1
copies of £. Thus K & ker{o) » 2 is = to a product of £ m copies of 7.
QED lemmm,

Exercize #123) If M is an abelinp group with e finite sat of
generators {x1,..,xml}. prove:

(i} there iz & surjective group map o210 — M;

(ii) the irnage N of & surjective mep p M —=+N is also finitely
generated with at mast rn generators;

{iii) any subgroup MEM is also finitely generated with at most m
gerierators.

Mow beack to the decoempeosition theorem: we have a surjective map
o LM =M, with kernel K, so that M 2 FTT/K, and K & Z0, with
n:im. We want ta conclude that M is a product of eyelic groups.
There i= one cate where this is easy, namely when the isomorphism
ZN— KCI™M tnkes ench factor of I into e different one of the factars
of £ ie when K is a "subproduct” of I, as in the following:

Lernma: Ii B = T Z is free abelian of finite rdnk m, (ry,.. rm)is e
segquence of m non-negative integers, and B 2 K = Trj (sz:l* then
B/K = TN (Z/rj), {where 2/0 = Z}.

preof: The cancnical map B = (TT; 2} — 17 (Z/rj) taking (x1,...xm)
to {[x1], . Juml) hes kernel X = TT; (rjZ). Hence the result follows
from the first isormorphism thecrem. QED.

Now if all we know 15 g FI =M iz zurjective, and ker{ag)] = I, how
tar awey are we from the situation in the pravious lermme? To ses,

let pZD = Lerie) ba the isormerphism in the previcus sentence, and
lat pZD =2 he the composition @01} Z—ker{a)C T} Z. Then we



have M = 21 Jker(o) = ¥ fIrnlg), so ot lesst IV is completely
determined by the rmmap ¢, ie by its target and imege. Thus to
understand M it suffices to understand ¢ well.

Claim: (i} y cean be represented by B rmatrix of lntegers, and

{ii) the situation tn the lemmes occurs when that rnatrix is dimgonal.

The matyiy of & homomorphism of free abelian groups.

Let p:&s = ZN—PB = 2 be a homemorphism between two free finite
rank abelian groups, and let ¢y = (1.0, .0), ez = (0,1,0,..0),....,

en = (0, .,0,1) , be the standard basis™ of the source group A Note
that ench element x of A has a unigue representation a: & linear
cembination Za«je] with =i integers. Since y is 8 hamomorphism, if
* = 1, mn) = Zotie, then gix) = Exiple]), zo @(x} is determined if
we know where p sends the basiz elerments e, Since each element
piey) has m vnigque expansion as an "m=vector™ in B, ¢ is thus
deterrmuned by the sequence of mn integers representing the vectors
wlel),. plen). It is traditions] and practical to arrange these
integers i an rraxn (read "m by n7) rmatrix (e m rows and n
columns), whose First column is the m-vectar g{e1). seeand column
13 the m-vector glez), etc. We refer to the entry located in the ith
row and jth celumn of a matrix as the {i,j) entry.

Hemember: The jth eolumn of the matrix [¢l for ¢ is the imeage
vectar [plej)] of the jth basis vector e of the source group A.

ol = [ [ple1}] [plezd].. .. [piend] |

Example: Suppoze o FxF— 2=« 2, is defined by ¢f{1,0) = (1,23}, and
wi0,1} = (-2, 4. D). Then the rnatrix it the following 3x2Z array:

[p] = Z
K

Te compute gla b)Y using this matrix, write {a.b) az a column vectar

an the right of the metri¥, and ferm the three "dgt products” of the

three raws with the vector (m b), Te if (c.d) is & raw of the raatrix
[p]. recall the dot product with {a,b) iz {c.d)-{a,k} = casdh. Thu: we



get the following rmatrix praduct for gie b}

Y . arib
wia k) = (2 4 L.'] = |2a+4dh| = f{a-2k, Za+db, 3a).
i 0" g

Motice that the subproup Imig) ={all elerments of farm q{x)} = (=l
elernents of form Tejplei)] = {all linear combinations of the columns
of [ipll. To in our caze Imig) = the subgroup of ZxZxZ spanned by
{123} and (-2,4,0). Now the point of all this is to notice how thea
roalrix looks s the situstion of the previous lemma, where B = Tl_j Fa
iz free abelinn (zay of rank 3), (¥, 5, t} iz m sequence of 3 non-
negative ntegers, end B o K - r2 % s 2 7. Then the natural
isarmorphism Z+xZxZ=K is the map {a.k.ci—+ira,sb te), taking =] to
(r.0,0), a2 to (0,£.0), and ex ta (0.0 t), and thus with matris:

e 0D
et = lo x 0
LR,

Foin ths case the matrix s diagonel. The thing to note i3 that
whenever the matrix 15 disgonel, then we are in the gond casze, as in
the previous lemme. le. the imapge of p, which iz the subgroup

KCB = T2, is always the spen of the columns, and when ly] is
diagonal with diagonal entries rj, the jth eolurnn is just rjej, so then
the subgroup K = TFj rjZ is & subproduct of B = TTZ. In this case the
lermme guarantees that the guatient B/Y = T (2/7r5), is & product of
evehe proups. In genersl of course the mairix iz not going ta be
disponal, but we weant ta show that we can "change bases" in hoth
the source and the target, from the standard bazas {#;) tc possibly
some other bases, thus compoesing ¢ with isomearphisms at both ends,
in such a way that the composed map 1T 2 & TT; Z—T;Z2 = T; 2,
has a diagonal matrix. Then we can conclude that TT2/Imig) =
TTJIMmEE} = & preduct of eyclic graups. The procedure we use will
alzo show that the diagonsl entries can be made to divide one
another, and thus give the product decomposition in the standard
form. [It iz not necessary for the two free abelien groups, the source
and the terget, to have the same number of factors. 1f not zquare,
a “diagonal” matriz will mean s disgonal sgqueare metrix plus some
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extra zero rows at the bottom, or seme extra zera columns on the
right. In either case the columns still generate g subproduct of the
target, which is the good case of the previous lemmm }

MNaw lat’s prove the key assertion made in this dizcussion.

Lermmea: Let 9. A— DB be & hormmoemerphizm of akelian groups, let
g:A— A, and v B— 8 be isemerphizms:, and let Teogig = HA— B be
the composition. Then B/ Imlep) = BAlmi(g).

proof: Campesing TB— B with the canonical map B— B/im(§) gives
a map F: B— B/Im($), which is sur jective since it is the composition
af two surjections. Her(f) is the subgroup of B that maps via T inta
Immtp). le xisin Ker(f) iff t{x} = @iz} = (Tepsaliz) for some 2. We
claim Ker(f} = Tmlg). To see it, if % iz in Ker(f), then ti(x) = §{z2) =
{Teypezi(z) far somne g, so if we set v = (2], then Ti{x) = T:p{y), and
since T is an isomarphism, x = T~ levoy{y) = piv). Thus x is also in
Irie), 50 Ker(f)Clmilp). On the other hand, if % iz in Imig), then
= ly) for some v in A, Since ¢ is an isomorphism, y = alz) for
some z, and sa x = geolz), whence tix) = {tegeadz) = =), zo that x
dosas belong to Ker(f), and ImigleKer{f). Thus Im{y) = Ker(f), hence
by the first isomorphism theorern £ B— B/Im({§) induces mn
isermmorphism B/Imig) & B/lm(§). QED.

Exercise ®124) In the setup of the previous lemma, prove that
kerfp) = ker(q), and Imf{p) = Imieg).

In aur application of the lemme we can take &4 - A and B = B,
Corcllary: If A = Z7, B = 2™ (finite products), and ¢4 =B is a
homomorphism such that M & B/Irmdy), and if there exist
isornorphisrns o A— A and T B— DB such that the composition
(tegeg) = AP has o diagonal rnatrix, then M is isomorphic to s
product of eyvelic groups,

Femark: A finite cy<lic group of order r in this product corresponds
to a diagoreal entry equal to r in the matrix ()], Hence the number
ol non zero diagonal entries equals the number of finite eyclic
factors in the product, and if the diagonal entries divide asch other,
then the product decormpozition is in stenderd form.
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§2) Disgonalizing an integral rmatrix, with application to
homomoerphisms of free abhelian groups

By the previsus corollary, the next proposition will imply the
decornpozition theorem.

Propositien: 1f A = ZN, B = 27, and p:A—+Bisa hormomorphisrn,
then there exist isomorphisms g:A—+ A&, and T:B— B such that the
commposition (Tepea) = &= B has s disgonsl matrix.

The pranf is by means of “elernentery row and celumn aperations,
similer to "Gaussian elimimetion” for solving linear egquations in
several variables. Since we want our opsrations to be reversible
owver Z, we restrict to multiplicetion By units in operation 3) belaw.

Flernentary row and column cpereticns on integer matrices
1) Interchange twa rows {or two columns) of the rnatrix.

2% Add to one row {or column} an integer multiple of another,

33 Multiply through a rew {or column) by e unit, ie by 1 or -1

The previous proposition follews from the next two lemmas,

Lermma 1;1f & = Z1, B = 2T, and A= B i5s & hamomorphism with
matrix [, end if |} is sny matrix chtained from ly! by = sequence
of row and column operations, then there ars jsamorphisms A= A,
snd T B—DB such that the composition {Tepez) = p:A— D has matrix
mqual to lip].

lerarma 2: A metrix of integers can always be transtormed into =
dimgonal matrix by some sequence of row and column operations.

lden for proef of lermmme 1: This is the same as in matrix theory
courses, ie. each row and column operation cen be dene by
multiplying by an sppropriate "elernentsry’ matrix, the matrix of
Lthe corresponding isomorphism. For cornpleteness, we will define
matrix multiplication below snd rernark that matrix rmultiplication

corresponds to composition of homomoerphizme.

An slgarithm for the proof of lemma 2.

The idea is to try to make the upper left entry in the rmakrix as
srmall as possible. IF all entries in the matrix are zero, there is
rmathung to dao: it is alreedy diegonal, If sarme matrix entry is non
zera, bring the smallest non zero entry (in absolute velue) ta the top
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left position by interchanging its row with the first row and its
calurnn with the frrst column.

Now the [irst entry in the first eolurnn i3 the smallest non 2ero
entry in the meatrix. Cell it a. e next try to make it even smaller,
end maeke all other entries in the first column equal to zerc as
follows. Consider the tecond entry in the first column, say it is b, If
b 1s divisible by a, then subtract an appropriate multiple of the first
row frorm the secend row replacing b by 2ers, snd proceed to the
third entry in the first column. If b iz not divisible by a, subtracting
an spprepriate muliiple of the first row from the second row
replaces b by s pozitive integer smaller than a in absolute value.
Then interchanging first and second rows makes the first entror in
the first row smaller then it was. Now repest this procedure.
Eventually we get the ged of a and b as the first gntry in the first
column. Then the first entry divides the second and the next step
Feplaces the second entry by zero.

Then we proceed ta the third entry and repest the process. At the
end of thiz procedure every entry in the first column it zero except
the Hirst entrv, which Me: been petting eontinually srmaller in
absolute value,

Mext we carry put the sarme process on the first row, replacing all
entries except the first by zero, and alweays making the first entry
saller. Unfortunetely thiz process meay destroy whet we did to the
First column, 1e. those entries may not be 2ero any longer. So we
return ta the first column and repest the procedure again, meaking
ali entries zero agaun except the first, which cantinues to get
drnaller. Then we go back sgein to the first row, whose entries may
no longer be zero and repest the procedure again, ete.

Since we are continually making the first entry in the first easlumn
simaller, as long as that entry fails to divide sorne entry in the first
raw or the first column, end since that first entry cannat get
srnaller forever, eventually entry (1,1} is non zerc snd all other
entries in the hirst row and the first column are zero.

Now consider the submatrix, of rows and columns after the first, and
repeat the whele procedure. If it is not identicelly zero, eventually
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we get B non zero entry in the (2,2} position, and all gther entries in
the seccnd row and second celurnn ere zero. Nete that capersations
performed on these later raws and colurnns do net chenge any of
the entries in the first row and colurnn, because in those positions
these cperations only add zeroes to zerces. Continuing to the next
submatrix, and o0 on, we eventually get s disgonal matrix, with the
non zera diagonal entries: sceurring before the zero entries,

MNow to get the matrix in standerd form, add ell the columns after
the first to the first calumn, putting all the diagonal entries into the
first column. Then repeat the originel procedure on the first
colurnn, getting @ disgonal matrix agaein but with the new (1,1)
entry squal to the ged of all the diagonel eptries. Now repeat this
procedure on the submatrix of rowszs and columns aefter the first,
getting the gocd of the remaining diegonel entries as new (2,2) entry,
Eventunlly the matriz iz diegoneal end esch disgenal entry divides
the remeaining ones.

Finally, If necezsary, we can multiply through selected rows by -1
until all non zero entries are positive. Mow the matrix iz diagonal,
the dismgonal entries successively divide esch pther, and the non zerao
entries on the diagonal are all positive. QED lernme 2.

Remark: There iz no need to follow this elgerithm in reducing any
particular metrix. In particular case: you should carry out
whatever operations look best and most efficient to you, The
algorithrs given slways works, hence proves it can be done, and
gives at least one way to program a computer to diagonalize 4
matrix  In prectice it should alwavs be sasier than this,

An example 15 probably preferable ta the presvious discussion.

f? 12 i1 [? 12 11 I 0 -1 I 1 T |
Is 2 -3, !'s 2z -3| |5 2z -3|_ |0 2 2
{m 4 10| " (1w w4 1| [w o1s 1wl |0 14
6 —-12 -12 {I 0 -1 7 12 I 0 12 18
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Consequentiy f HO(ZxZxI=Z) js the subgroup generated by the
rolurans of the first rmetrix above, the guotient M = {(ZxZxZ« L)/ H i
isormorphic ta {0l»22xZg =2, |In particular rank(M) = 1.

QED lemma 2.

Background for proof of lemma 1. Review of Dot products,
Metrix preducts and sums

“We define the dot product of twa elements (a),.. anl), (b1,  bp) of IN
to be (Bay,...anl-tki, .. .bal = Zajbj. Then we define the product APR of
two Integer matricas ta be the maeatrix whose entry in the ith row
end jth column equals the dot product of the 1ith row of A with the
jth row of B. This preduct iz defined iff the rows of & are the same
lenpth as the columns of B, i&, iff the purnber of calurmns of A egquals
the nurnber of rows of B, Thus if AB is defined, BA may still not be
defined. For exemple, if A iz 2=56 and B s 6x4, the product AB is
defined and 15 & 224 matrix, but th# product Ba iz not defined.
Alimost any example shows even if both AE and BA are defined,
they need not be =gual.

We can add two matrice: iff they have the sarne dimensions, by
adding corresponding entries. We can multiply a matrix by an
integer, by multiplying every entry by that integer. Metrix
rmultiplication commutes with mteger rmultiplication eand is
distributive over matrix addition az long az all aperations are
defined. The "zerg matrix”, with all zero entries, 1z an additive
identity for matrices of its size, and the "identity matrix”™, = squere
matrix with I's on the diagonal and zeroes eltewhers, is the
multiplicative identity for matrices whaoze product with it iz defined.

The product of matrices 1z associetive when defined. An example
vou work sut yourself is prokakbly the best way to be convincad of
this, but for what it's worth: if A = {(aijj), B = (bjk], and C = {ckl}
then the (Lk) entry of ABE is E_j Eai_jhjk}, so the (1,1} entry of {ADBXC iz
k(T jlaijbjkick]. Similarly, since the (.4 entry of BC is Ex(bjkokl),
the (.1 entry of A(BC) is EJnijiEkh_j].-_::k]}. Interchanping order of
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surnrnation, the {i.]} entry of (AB)C = E};EJ{&i_jb_jth]' =
T jxkimijbikokt = the (1.1} entry of A(BC). Hence {ABIC = A(BC).

The homomerphisrm associated to & matrix

If 412 an maxn matrix, then A defines & hotnomorphism

¢ N —+IM ~where for any element x = (x4, %) of Z0 alx] = Ax
with ® written as a column vector on the right side of the matrix A,
Thuz Ker{g) = the subgroup of vectors x in N whase dot product
with svery row of A iz zero. It is essy to see that pie) = the ith
celurnn of A Hence @ix) = Dixjplei) = the linear combination of the
celumnns of A formed with the ceefficients from x. Consequently,
imlg) = the subgroup of #M penerated by the columns of A. If AB
are matrices whose product AB is defined, since for every x in #1
(ARt = A(Bx)} by azsociativity, if ¢ is the homomeorphism defined by
A and ¢ that defined by B, the product AP is the matrix of the
cermposition g+, Since the identity maetrix iz a rmultiplicatise
ideritity, it iz the matrix of the identity hamomaorphism. Thus a
hormomeorphism g 15 an lsomorphistn iff its metrix heas o
rmultiplicetive inverse, and then thet inverse matrix is the matrix

of the inverse somorphism ¢~ 1.

It o 250 M = LN gt follows from pur dizpussion that the additive
group Hom(M,IV) & {addiuve group of all mxn integar matrices] =
Z2MEA the free ahelisn group en mn clements, Weoreover, the non
cornrriutative (if mo: 2) ring End(M) = Hormn(IMLIVI} = {non
cornrmutative (far m @ 2] ring of all m»m raatrices]. The additive
group af this ring is isormnorphic to the free ghelian group on me
ciernents, but the ring structure is not theat of the product ring T2
with me factors, since that ring is cormmutative, If we denote the
invertible m=m matrices by GLm(Z), then Autid) = EndiM}* = the

unit group of the ring End{lM), is isamarphic to the multiplicative
group GLrn(Z) ("genaral linear group over  of order m”).

procf of lemma 1:

We need the following facts: If A is an m=n mateix, and [T] is
the matriz chtained from the mxrn identity maetrisx by performing
nny row cperation, then the product [T]A i the matriz cbtained by
perfarming the same row cperation on A& If lo] is the rmatrix
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chtained fram the m«n identity matrix by performing any column
cperation, then Ale} is the matrix cbtained by performing the same
calumn operation on A, We could prove these statements without
too much trouble, but again it is much mere enlightening for you to
Carry out :ome examples.

MNow we can prove lemma 1, since performing a sequence of row and
column cperation:s on A 1s equivalent to multiplving A by 8 sequence
af matrices ag follews Itpll. llt1]alaq)l.. )log]. Since esch row or
colurnn operation is mverted by another row or colurnn operation,
each metrix [1il, [oj), iz invertible, hence is the matrix of an
isornerphism tj, and o) respectively. Since a composition of
1sormarphisms is an isorparphism, the compeositions T = (Tpe...o71)
and g = (12 0], are izamoerphisrns Hence if A is the matrix of =
homormorphism ¢ 27— 211 then any matrix obtained from ¢ by
row and colurmn operations is the rmatrix of & composition of form
{Tewee) where +,20 are isarmnorphisms. QED for lemma 1.

This finelly proves the diagonalizetion propesitian, and thus the
fundamental theorern of finitely generated abelian groups.
LQED Theorem.

Exercize #125) If K is the subgroup of €9 generated by the
elernents £3,0,15,3,15), (6,6,-6,12,0), and (24,6 -6,30.0), find the
standard decompositen of the quatient group M = I39/K. What is the
rank of M7 the invariant factors?

Remarks on Renk and Independence:

If M iz eny sbelian group with m generators, and ZM =T a

sur jecticn, the kernel K of 21— M iz alwavs free of rank n ¢ ™.
Henice the map 9 "= I™ such that M § 2/ Imiy) cen alweys be
a:zumed to be injective, with rank(K) £ n = number columns of the
matrix [¢l. Sirnce Ber(p) = {00, it follows from the definition of
matrix multiplicetion that 0 is the only elernent of Z1 which dots to
zero with every row of [¢). Jince by exercise w113), the kernel is
unchenged, up te isaomorphiam, by row and column operations, this
rémains true after dingonalizing [p]. Hence all n diagonal entries of
the diegonalized matrix [§] are non =zero, 3o there are n finite cyclic
factors i the decarmnpasition of M (sormne possibly zera), and (ra-n)
mfinite cyclic factors. In particular the rank of M equals (rn-n).
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Exercize #1286} Prove that renk is edditive in the senss that:
If M = A/B where A 15 any bin gen abelian group and BCA m
subgroup, then rank{hM) = rank(A) - rank(B).

Definition: A sukset 5 of an akelien group M is (linearly)?
independent iff whenever a finite linear combinetion Tk = 0, with
#1in 3, vy n &, then a]]l «j = . Hence a subset = is (linearly)
dependent 1ff there existzs some finite expression Zagxi=0, with xj in
3, xjin £, and some o, = 0.

Exercise #127) Prove:

{1} An independent set cannot contain any elements of finite order.
(i) [f M has an independent generating set 3, M is free on 3.

{iii} The renk of a finitely germerated abelian group M equals the
largest integer n such that M centains an independent subset of
cardinality n.

Definition: An independent generating set 3€M in an abelian group
I iz called a "basis” of M. (M may or may not have a basis) A
‘rninirnal set of generators” is one which no longer generates when
any elermnent 1z remnoved, and an "maximel independent et” is cne
which iz ne longer independent when any elerment iz adjcined.

The fellowing assertions are analogs of those in & theorem about
finite dimensionel vector space: in section §15 af the 843 notes:
Consider these assertions:

It M = ZD, then:

i} More than n slements of M ars alweys dependent.

i) Fewer than n elernents cannot genarate b,

iii} Every hasis of M has cxeactly n elerments.

iv) Every set of n independent elements in M alse generates M.
w) Every set of n generatars of M iz also independent .

vil A meximal independent subset of ¥ has exactiy n slements.
vii} Every rninimel set of generators of M has exactly n slements.
vili) Every tndependent subset aof M it conteined in & basis

ixj Every penerating set for M contains & basis.

XJ) A subgroup of M cannet have rank grester than n.

wi}l A proper subgraup of I has rank less than n.

#ii) An isomorphism f M= carries & besis of M to & basis of N,
hence N is mizo free of rarnk n
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Exercize # 128) Which of the 12 aszertions above ars tryue?

Exercize w120} Give counterexarnples to the assertions above
which are false.

Exercize #130) Prove the sssertiars akove which are true

53) Dhegonsalizing m matrix over a Fuclidean domain, with
anpplicetion to homomorphisrme of "free R-modules",

It should be clear that the process given (in the proof of lerrme 2 in
the previcous section) for diegonalizing a metrix of integers, consisted
essentinliy of using row/colurnn operations to replace twe integers
by their god, ie to cerry out the Euclidean algorithm. This means it
can he repested in slmost the same way in any ring adrnitting such
an algorithm, i in any Euclidean domain, such a3 the palynomial
ring k[X] over & fiel2. To exploit this observation, in this section we
define metrices pver any ring R, and investigate what they
represent. AR mxn metrid over any ring R is of course a
rectanguiar array of elements of R with m rows and n columns, We
assume as usual thet R is commutative with identity.

Definition: Matmxn{R) iz the abelian group of mxn matrices over
R, where two matrices are added by adding corresponding entrias,
If wwre define rmultiplication of R-matrices exactly as for Z-matrices
[the {Lj) entry of AB iz the dot product of the ith rew of A with the
Jth column of B, an element of R), then Matnan(R) is a ring (non
commutative far n22) whose group of units we denste by GLalR).

Note: As additive Eroup, Matrmwn(R) &8 RMR the product of mn
copies of the abelian additive group underlying R,

To generalize the diagonslizetion process to metrices over a
Euclidean domain R, we need to modify our row/column operations
50 they sllow the Euvclidesn algorithm in R to be carried aut jn W
The following definitiens make sense sver any ring R,

Elementary row/celumn operetions on an R-matrix:

1} Intarchange two rows (or two columns) of the matrix,

2) Add to one row {or columnn) an R- rmultiple of another.

33 Multiply through & row (er coluran) by & unit of .
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Diagonalizing & matrix: To deduce the diegonalization theorem, it
suffices to require F to possess a Euclidean algorithm.

Lermarna: If R iz & Euclidesn demain, any R-rmatrix can be
disgonalized by slementary row snd ¢olumn operetions.

praocf: The algerithm given for the proof of lernma 2 in section &2
works here, but let's think 1t through sgain

If sorne entries are non gero, bring (one of) the srmallest {in Euclidenn
“size’) non zero entry ta the tap left position by interchanging its
row and column with the first row and column. Call it a.

If the second entry in the hirst colurnn, say b, iz divisible by a,
subirect an appropriete multiple of the first row from the second
row replacing b by z2ero, and proceed to the third entry in the first
column. If b is not divisible by a, subtracting an appropriate (R-)
multiple of the first row from the second row replaces b by an
element of K smaller than e in size. Interchanging first and second
rows rmakes the first entry in the first row zmaller then it was.
Hepeating this procedure, eventuelly makes the god of a and b the
first entry in the first colurmnn, and the next step replaces the second

entry by =zero.

Proceeding ta the third entry, we repeat the process, eventually
replacing every entry in the first column by zers except the first,
which has been getting centinually smaller in sias

Poing the same process to the first row, replaces all entries except
the first by zera, alweys making the first entry srneller, but possibly
introducing non zero entriez in the first colurnn. Returning to the
first column and repeating the procedure again, meakes all those
entries Zero again except the first, which continues to get srmaller,
We repeat the procedure agein, on the first row, then the first
column again, etc... Since entry (1,1) canneot get smaller forsver,
eventually it is non zero and ail sther entries in the first row and

the first column are zero.

B imduction, the subratrix of rows and columns after the first can
be diegocnalized by row/calumn aperations, and these deo not disturb
the first row/colurnn. The serme procedure as before puts the
matrix in standard form, ie. the rmatrix is disgonal and each
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diagcnal entry divides the remeining anes.

The last step in the previouz argument of making all diagonal entries
positive integers rmakes no senze here. Hence the dingonal entries
sre not unigue here, but only up to multiphcation by units of B,
QED.

Interpreting the result: Now what good daoe= thiz do us, ie. what
dees it mean? Eg. what does an msn matrix of entries in & ring R
represent? Jince integer matrices represent homeornorphisms

ZN =7 of free akelian groups. surely an R-rnatrix gives some sort
af homomaorphism of the groups RP— R 1 we define it the same
way ax before, ie. an m»n matrix A over R defines the function ¢{x)
= A-x, where x is written as a column makrix, then we da get a
group hormmomorphisim, but in fect not & general onk, &, with this
definition ¢ has the property that ploox) = agix) for every x in RN
and every o in R, where a{nq,. xn) = {«xx1,. . oxn). The point is
that our group R 1z m specia] one, with more than just the usunl
additive group structure: it also admits multiplication by element: of
E, and the hormmomorphism defined by s matrix not only commutes
with addition, but alse with multiplication by R.

Let us meke this precise, First define "R-multiplication” on & group.
Definition' Given an ahelian group l',]"---"||,+}r and a {commutative wwith
identity) ring R, an R-module structure an M i5 & pairing RxM— 1
with the usual properties of multiphcation. That js, if we write
simply am or o for the image of {x,m) in M, then for all «,8 in
R. and all m,n in ¥, we have (aplm = «lpm), (a*plm = cxmrgm,
xin*m) = =m + «n, end 1'm = m.

An smbelian group VM with such a structure ix called an R-rmodule.

Remaearks: i) The third preperty in the definition above says the
elements of R becorme group hormamerphizme: W= M, via
multiplication, 1.e. each r in F defines a hormormorphism r-Mi— M, by
riz) = rx. Thus an RE-module structure on M defines a function
R—Homi(M, M) = End({M). The first and second properties above say
this function is & ring hormomerphism R— End{M) intoe the nen
cernrmutetive ring End(iv} (where multiplication is composition).

ii} Conversely, if o R—End{lv) iz any ring homomarphism onto &
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(commutetive since R is) subring of End{M), we g*t an R-module
structure on M by setting rx =o(r)ix). The point is that there is ane
smallest and one largest ring naturally acting an M, the largest
keirng the non commutative ring End{lV), arnd the srnallest being the
subring generated by idpg which gives the natural Z-ection on v,
vig the unique map 2~ End{M) taking 1 to idh. Our hope is there
rnay be lots of interasting commutative rings B in between these
twe, whaoze action can tell uz rmore about M,

ii) Note that a group M may not sdmit & structure of R-moedule for
every ring B, For instance as we have noted before, jf M is a finite
shehan group and R iz an infinite field, then there iz no Ting rnap
E—EndiM) [A ring mep with field as source is injective, but if R is
infinite and End{M) is finite, no such map is possible ] Precisely, M
haz an R-module structure iff the ring EndiM) containg a subring
isornerphic to a quotient of R by an ideal. The only ring R such that
End{M] alweys hes this property is R = Z.

iv) Sinee every R -module structure an M is given by a ring map
E—=End(M), there is an assacinted kernel of this map, the so called
‘annihilator ideal” for the R-module, [e RD>ann(M) = {those r in R
such that rx = O for all x in M}, Thus the structure map factars via
an injective ring map R/ann{M)— End(M) displaying M also as an
FElannolM} - module, where Bfanniiv} iz i=prnorphic to m
commutative subring of End(M).

v) Viewing R-multiplicetion as a ring map R— End({M) is analogous
to aur earlier viewpaint thet an action of & group @ on & et 5 is
equivalent to & group homemerphism G— Bij(3). Since our ring R is
cominutative, here we may ignore the problem of distinguishing
between a 'Teft" or "right” rmadule structure.

vi) If R is = field, an R-medule is nothing hut @ vector space over R
If R=f, an R-meodule is precisely an abelian group,

vil) The word “module” was apparently introduced hy nuraber
theorists at the end of the 19th century to denote the ring of
integers in a number field, an important example of a finitely

generated ebelian group.

Rermark: We have defined a new concept analagous to an abelian
group. Dur first Job iz ta examine thit mnelagy, in erder to take
advantage of what we already know about abelian groups, So we
will rethink m pumber of fundamental constructions on shelinn
BYoups, to see how to madify them in the present setting.
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As always, the first necessity, in order to compare two R-modules iz
1o define "R-homormarphisms',

Definition: If M, N are two K modules, & graup hermomeoerphisrn

@ =N such that plrx) = reix) for every r in R, and every x in N, is
called an R-module hamaomorphism, or R~homomorphism, or R-
module map, or simply 8 homemorphism or even just & map.

[1e if everyhody knows the cbjects are R-rnodules, it may often be
rzsurmed that 'map’ means R-meodule map )

The zet of all R-module map: N— M iz denoted HoampB(IN, M), It |s
itself an R-module where (g +)) =M is defined az usual by sdding
values, e (peddin) = plxd+rdix), and where (relx) = r{p{xD

When N = M, Homp(M,M) = Endr{M} iz B non commutative ring
whose rnultiplication it composition. Since R is cornrmutative, the
ring map R— End(V} actually har imege in Endr(M) and in fact in
the "center’ of thiz ring, ie. multiplication by elemesnts of R
eernrriutes {by definition) with R-endomeamarphizms of M. The ring
structure on EndR(M) together with the ring mep of R into its
center, says Endp(M} is more than just apn R-module, it i an "R=-
algebra”. |If 5 is m commutetive ring, an R-algebra structure o 5
1z Just & ring map R—3; in particular this mekes 5 an R - meodulie]

The rmast important definition, which tells us when two R-modulss
are ezzentially "rlike” 1z the follovnimg:

Definition: An R-isomorphism, or simply isomorphisrn of two R-
modules NIV, is an R-module map ¢ N— M with an R-inverse, ie.
cte admitting anather R-medule mep M— N such that g+¢ = idn,

and Jr = 1dpy.

Notation: “We dencote the set [possibly ernpty) of R-isornorphisms
N—=+M by Isomp(N,M), and the non abelian group Isomp{V,M) =
AutR{M), (alweays non empty sincs it contsins idpg.

Femerk: The crucial definition of isomorphism is anticlimactic,
zince we |learned when dizcusting categories that the definition of an
tsornorphism (of any type) is always an adrnissible map ¢ such that
some other adrmissible map ¢ exists of that same type, in the athar
direction, such that ge} and §ep are both identity rmaps. The next
result makes proving the existence of such inverse: a littls sasier:
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Exercise #131) An R-rmodule map is an isormorphism iff it is
bijective.

Remnarks: i} Not all group meaps are R~module maps, i« the
inclusion Homp(N,M} € Horm2 (M M} is ususlly proper. Far instance,
¥ 15 an akelien group and an infinite dimensional vector space ouer
0. Thus we ¢an chosse, by Zorn's Lemme, 8 O-basis for B. Then we
can define & @-linear (additive in particular) map ¢ B~ R sending
each of the infinttely meny banis elerments anvwhere we like, In
particular, since {i,n} is @ Q-linearly independant set, hence
conteined in & hasis, there need be no relation at all hetween p(1)
and glm} MNow B is also an B-modute, but the only B-medule maps
ywR=F are given by rmultiplication by & fixed real pumber «. le. if
wlilzo, then @i} = wp{l) = Ta. HMare generally, if ¢ is an B-
modile map, then g(x) = xpf{l), for all x in R,

A zimpler exarngple: the quotient ring B = Z[¥]/{%2), As sbelian
group, R & ZIxZ, where in.m) corresponds to [n*mX]. Thus the map
wR— R taking (n,m) to {2n,3m) e such that glln+mXD) = [(2r+3X], i
8 group msep but not an R-meodule map, since that wauld require
eg. pUXInsmXl} = [Xlp{ln+mX]. But the lhs egquals o{lnX] = [3nX],
while the rhs equals [2nX]), & contrediction.

it) Since R-modules generalize vector spaces, abelian Eroups, and
idenls, to appreciate statements sbout R-rnedules, it helps to
translate them into each of these cases.

At last we can sey whet m»n matrices over R are for: they
represent R-homoamorphizms RP=R™ Note that Matgxn(R) has
an R-medule structure, where we multiply a rmatrix 4 by an

element « of R by multiplving every entry of A by «.
Froposition: There is & natural izamorphism of R-medules

Matyan{R) & Hompl{R RIM)

proof. There is & standard baziz for RT consisting of the vecters sl
where =1 = (1,0,..,0), ez = {0,1,0,._.,0), ete...., and R ix free on this
tet in the sense that an R- hormoamorphism PR— X s determined by
where we send these basis ¢lernents;, moreover we may send them

anvywhere we please. Thur an R-homomoerphismes out of RN
determined by an n-tuple of elernents of the target rmodule, in this
case an n-tuple of elements of R, je, an n-tuple of column veetors
of iength m with entries in R. This iz precizely am ma»n matrix over
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R. This correspondence preserves addition send R-multiplication. To
he precize, define 8 map & HomRp(RML,RM)= Mat, . o(R), by By =
lple1) wlez) .  wien). |e &y} is the matrix whose jth calurnn is the
vector glej). Then @(p+y) = [(p+ifer) (prgdlez). . (p+ddlen)] = [pleq)
wlend plewd] + [ples} plezd plend] = @lp) +» Bip). Also Elryg) =
({redel) (redlez).  Areilend] = rlple1) ¢lez). . plen)] = r-Gly). Thus
H is an R-homomorphizm.

There iz also has an inverse map i as follows:

(P Mate . nfR) = HompR(RTLBMY sehere ({1 vnll = gy, and
pulocy, .on) = EEJUJ= V- * the matrix product of the matrix v
with the column vector o,

[0 see these are inverses, (Ee«0W[wy.. wR]) is the matrix whaose jth
solumn is pyles) = veej = vy And ((2:8)g) is the map whote valus
At o = (@, wn? 15 gele) = plel w = Tojplef) = pla). Thus ((1e601{g)
: . QED.,

Remark: we repeat, if ¢ R = RN g @ homomorphism, its standard
matrix 15 the m=n rmetrix whaose jth column is the vector {.pitj}.

Coroliaryiof the precf). For any R-module M, Homg(RT™ M) = Mn

prooct: Any pRT'—M iz uniquely deterrmined by where it sends the
mtandard basis {eji and we can send those elermnents anywhers we

wizh, so gtz eguivalert dete to the n-tuple {ple1d,....elen)) in MB
This zhows there is 8 kijection of sets, and an argument anslogous to
that akove zhows this is an R-module isomorphism, where the R

cmoduile structure on the Certesian product VIR s defined
remponentwise, |see b4, (i), below]. QED.

Remark: Multiplying matrices over R is still associative, by the
proof given above in §2 aver 7 |"interchange order of summation”,
which depended on associativity of multiplication and
cormmutativity of eddition in Rl. Conseguentiy, rmatrix
rmultiplication still carrespeonds to comnmposition of homomorphisms,
hence give:s an isornarphizsm Matn{R) & End(IM) as rings.

How we can restate the disponalization result for matrices over
Kuclidean domains, in terms af homormerphismes, as we did over Z,
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Proposition: If R is any Euclidean domaeain, A = R%, B = R and
g:A— DB iz @ homomeorphism, there exist isomorphisms o A= A, dnd

t B~ B such that the cernposition (T2peag) = §:A— B has s diagonal
rratrix, in which each diagonal entry divides the next.
proof: Just as in 52 above (over Z}, this proposition follows from the
dingonalization result ebove and the next lernma:

Lemnma:If Risanyring, 4 = R, B = RN, and pA—Bis a
hornomeorphism with raetrix (], end if [¢] is any matrix obtained
from [p] bv & sequence of row and colurmn operstions, then there
are isornorphisms o A= A, end T.B— B such that the composition
(Togog) = PA—DB hes metrix equal to ljl.

proof: The proof of this is word for word the same as the proof of
lermrne 1 in the previsu: section {(replacing Z by R). In particular,
the isormorphisms ¢,7 ere again compesitions of "elermentary”
isormorphisms, where an elementary izomorphism s one whoss
matri® iz the matrix of an elementary row/colurmn operation,
QED. for both Lemma end Prop.

REemarks: i) Wote that raw end colurmn operations are egquivalent ta
elementary isomorphisms, over any ring, but that compositions of
clementary isomerphizm:s dg not necessarily suffice to diagonalize a
roatrid except over a Euclidean ring.

ii) To prove that every finitely generated module over any
Euclidean daomain, iz isomorphic to a product of cyelic modules, we
can just repeat the proof given over X, but first we need to give R-
rmodule versions of the definitions and standard properties of the
"nouns” in that proof, such asz: submodule, cyelic medule, product
module, gquotient maodule, imege medule, first isomorphism theorern.
We also need to prove submodules of finite free modules are finitely
genersted. These are entirely analogous to the proofs for abelian
groups, but since we want to be confident abaut them, and use
them in pther contesxts as well, we spend the neaxt two zections
discussing these foundation:, and then complete the decompaosition

theorerm in section 56 halow

Digression on "naturality™: When we proved the equivalence of
matrices and hormomorphisms above, we did nat say what we
meant by "natural’, although you may feel thet it reflacts the
predicteble nature of the isomorphizsms we gave in the proof, In fact
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't hes & rmore precise “functorial” meaning. As Auslander put it, it
means when yvou chenge the ohjects, you get meaps, and everything
rermriutas”  Mere precizely, suppose you have a ring map ¢:R—+ 5,

. B. suppose vou ‘change the ring . Then by applying « to every
rntry in an R-matrix A, vou get an § matrix olA), hence a map

T MatmxnlRY= MatmaniS), Applving ¢ to every entry of 8 column
recter also gives s mep o RM—2IM and we can define

FHomp(RN BM)— Horn (S0, 51, where for ¢ in the source, and « =
led,. .2 we define alpjix) = Emjl[r:-rﬂ.p]{ej}, where {EJ']' iz the
jtandard basis of RP. Then naturality rmeanz that the two
pornposite maps Matmx n{R)— Hom R (RO R — Hom g{3N,5M), and
Matr xnlRY = Matm« n{5)— Homg{S30 511 are the same, ie.
Fe0p=0g-3.

Examples of change of ringsare I =25, 2CE, QCR, RCC, kCk|X].

Il tHe next section we shaw Row to prcduce lets of R-rmoduyles, give
their kasic properties, and soms impertant goccurrence of modules in
neture, such as vector fields, and rings of integerz in numbker fields.

54} Example:s and censtructions of R-modulas

Just az for vector spaces, the most fundamentsl concept i that of
representing elements of modules as linear cormbinatians af other
dlernents, including possible uniqueness of such representations.

irefinitior: Siven any collection of elements S = [xj)] of an R-rmodule
[4, & linear combination {(or B-linear combimation) of elarments of
41z m fimite expreszion of forrn ZeiNg, with the aj in R and xj in 5.

Definition: & subset {xjl<M is linearly independant iff whencver
Loy = 0, with o in R, then all i = 0]

1)} Submodules: A subgroup of M which iz closed under R-
raultiplication is called an R-submodule of M. The subset of M
conszisting of 0 end all linear cambinations of elements of iz a
submodule called the R-submoduls generated by 8, (Hance the
empty et & generates {0}) Thus 8 iz s generating zet for M iff
every non 2ero element of M ois a linear combination of elements of
S, A rnodule i3 called finitely generated iff it can be gensrated by

B finite et 5.
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Ml can be generated by o subset of m elements iff there is a
surjective homomorphisrm R™M =M, for zome positive integer m.

A submodule (s} = Ra € M, generated by one element & in M, is
called "cyclic” or "principal”. For any R-hormomorphism p— N,
the subgroup M2ker(p) = {x in M : @ix) = 1) is an R submoedule of
the scurce, since if g{x) = 0, then also wlrk) = relx) = r-0 = 0, 50 if x
15 in kerfg) then rx is in ker(p). For any R-homormnorphism ¢:M=N,
the subgroup NoTmie) = {vin M . v = qix), for some x in M) is an R
subrnodule of the target, since if y = ¢lx), then ry = @irx), soif v is
in Im{yp) then ry is in Im{yp) tos.

A subset JCR iz an R-submodule iff it is an B-ideal. The subzst {{a,a)
for sll & in R} is the R-submodule of RZ generated by {{1,1)}. This
might be called the "diagenal” submodule of RZ. If ICR iz an ideal,
and M 1z an R-module, the subset M2 M = {lineer cornbinetions
Lewjx g with «jin I, xjin M} 15 & submoedule of M. It §s the
submodule generated by all products {ax, o in ], = in M},

2) Finite product modules and (finits rank) fres modules.

If Mj,...Ms are R-modules, the Carlezian product greup M = MM iz
naturally an K-meodule where oc{a), .apn) = (xaq,..c8q) for « in R,
and ajin Mj In particular, since R iz 8 module aver itself, the
product group RA hes 8 natural structure of P-meodule. Forn = 1, R
15 thus & module aver itself,

If 1,J are idenls of R, IxJ iz & subrmodule af RZ. 1f 1.J are Frincipsal,
generated by ab respectively, then I=J is generated by s D), (0 B)}.
Muare generally, if N1€VM4, and N2C M2 are submodules, than MNixN2
it m submodule of MqxV2.

The projection wj:TTJMj—' Mi, on the ith factor, ie wi{ai,. .ag) = a;, is
an F-module mep. The projection miRA—R has matrix (0.0 1 0..0],
where the "1 iz in the ith position. Note, for x = {(x1,...%s) in Tl"_ij,
wiln) = wj, sox = (milud, .. walx)} = (%1, He).

The injection g Mj— 1T ,Mj, of the ith factor, gi{ai) = {0, 0,ai,0,.0),
{17

is an K-module meap The injection o;R—R" has matriy |1 | where

the "1" iz im the ith position.
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Pefinition: An R-module which is isomerphic tg R is called "fres’
if rank n. [See below for proof that rank iz well defined ]

For example, Matmxn(R) 2 RMD 2 a free R-module of rank mn,
hnd thus so is HomR(RTL R} by & result in the previous section.
[f1,J are principe] ideals in B damein R, then IxJCRZ is a fres

subrpadule: ve. if | = (&), J ={k], respactively, then ¢ RZ—=1xJ defined
by (1,00 = (2.0), (0,1, = (0,k), i3 an isomorphism,

Proposition: The following are equivelent for an R-module MV

(i} IV is free, of finite rank.

(i1} M is isomorphic to RD for some n.

{iii) M has & finite subz=t {xj} such that each elernent of M has a
unique expression as an R-linear combinetion of elements of {x}.
(iv} M has s finite subset {x ] such that for any R-module X, every
function (x;] = X extends uniguely to an R-rrodule mep M— ¥,

(w) M can be generated by a finite linearly independent subset.
proof. Useful exercise.

Definition: A& "heazis” or "free basis” for an R rmodule M is a linearly
independent generating set. Thusz M is free iff it has a bazis,

Caution: Jorme texts refer to & "basis” of an ideal in a ring R, when
they mean only & "generating set”. Indeed. 8 non empty subszet SCR
13 linearly independent iff 3 consists of one non zero-divisor. (Twa
element: {ablC R must be dependent since ba-ab=0)) Hence only
principatl idealz can have free hases.

2} Modules of homomorphisms.

Az observed abouve, for any two R-modules N, M, the sat of R-
homomorphisms Homp(N,M) is naturalty an R-madule, The
particular example where VM = R, is Homp(N R}, is called the "dual
rnodule of M, and dencted N*. Mote: this rmodule may not be az hig
8% it looks: Hnmzitllglinu, Z) = 10 PWhy?] If we put the ring in
the first variable of Horn, we da not get enything new, in the
fellowing senze;
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Lemma; There is 8 natural isornorphisrn HemRI(R M) = M. More
precisely, "the functer HomR(R, ) iz naturally equivalent to the
identity functer” {on R-maodules).

proof: The iscrnorphism follows from our earlier result that
Homp(R" M) = MDD, but neturality needs to be checked. Auslander
used to surnmarize naturality simply ez “when you change the
ohjects you get maps, and everything comrnutes’. Here there are
two objects, R end M, but we have stated the result as dealing with
functors of M, so0 M is the object and the functors Hamp(R,-) and
IdM are thought of as acting on the category M of R-modules M, [e.
the Horn Yunctor sends M — HomRk{(M), and the identity functer
sends M= M. Since these are functers we must else say what they
do to meps. For ld thiz iz trivial, since it abviously sends tp I =+ T
to g N—+ M, thus it certainly sends identities te identities and
caompositions to comnpesitions, so it is 8 functer,

The HomiR,-) functor on the other hand must send a meap

g M= M to some map ¢» HomR(R,N}—HomR{R,M). The only netursl
choice is “compesitisn with ", Thus given | irn HompiR,N), define
elfl = yof. Then (peplelfl = (poglef = olpet) = falpelfl) =
{hwopelif) Fo (yo@le= (paspe), hence the assignment daes preserve
compositions, Since (idpa (i} = {idppief = £, thus (idn)s =
idHarn({ R M), 50 the assignment alsoc sends identities to identities.
MNeturality of the isamorghizm 8 HemmR(R, M) & M, means that,
given & map ¢ N—+M, if we use the iscmorphizms B and €y ta
rquate Homp(R M) with M, and Homp{R N} with N, then ¢ must
become equeated with . In other words, if we recall the
isarnorphisrn B HomRr(R W) = N, to be given hy B(f] = f{1}, then
the cormpositions HamR(R,N) — HornR(R M) = M, end

Hompi{R,N) =N —M, must be equal; ie Op > @ = p ¢+ ON. Solet f
belong to Hornp(R,M). Then (8 = pedf) = Bnilgel = (pegil) =
@if{1]}. On the other hand (g « SN = @10} = lf(1)) QED.

The {nllowing netian af maps "of pairs”, ie of rnaps which respect
submodules, has interest for the next section an meps of quotient
modules: if M and ¥ sre eny modules with sukmodules NCM, YCX,
the set Hompf{WVL W), (X,7)) of "R-homomerphisra of the pairs’ (VI N3,
(¥.Y), iz defined as those R-meps ¢ M- X such that p{l)C¥. This
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zubset HomR{(M,NJ, (3. ¥)) € Homp(M M) is clozed under addition and
E-multiplication, hence 15 a subrmedule. In particuler
Homp{M. X2 Homp{{W N}, (¥,0)) = those R-maps p:M =X such that
M<ker{q), is a submoduis.

4} Quotient modules, if NCM is an R-submodule of an R-rnodule,
then the quotient group M/N has e natural R-module structura,
where r[x] = {rx]. This is well defined since if [xl=|y], then s~y i3 in
M, 30 rix-v) = rx - ry iz in I, and thus lrx] = [ry]l. This definition
says precizely that the canonical group mep M—=M/N is alss an R

hommomer phism.
For example, up te izomerphism, the only gquotient rmodules of B are

those of Tarrn R/l where ICR is an ideal. If (a1,....ayn) iz an element
of BRI, we can construct from it two submeodules anmd gquotient
modules: either B3N = the principal submedule R{af, .  apn) =
Wrat,. . raml, for all ¥ in R}, with gustient RN, ar the product
Tjiajl of principal submaodules of R, with gquotisnt RM/(T] (mj)} =
TT_j ER.-"{&.J':I:I. More generally, if M = 'I'[J' 1j. for any R-ideals 13,17,
then RM/N = T1; (R/15).

Remark: An R-rnadule M is ewvelic iff M is isornorphic to ane of form
R/l for same jdem! JCR  Nate, tf R2Z[X], then R iz evelic as an R-
rmodule, but not cyelic as a graup, ie not as 8 Z-module. [n fact R
15 rot even finitely generated az n Z-medule.

If 1CE 1z an i1deal and IV an E-medule, and MIIM = the submodule
generated by products ook with o in I » in M, then the guotient
MAIM 1z an B-module. But MM iz alio naturally an RYD module,
since multiplication by elements of [ annihilates M/IM, o the ring
map B—End(M/IM) factors via & ring rnap R/I—= End(M/TM).

5] An example from geometry and physics: vector fimlds,
Let S = {p=fx,v,2): xZ+yZ+22 = 1}, be the unit sphere in R¥, and let
TCS3xFJ be the subset of pairs {{p,v), st. pv = G}, T is called the
“tangent bundle’ of 5, since each pair (p,v) in T consists of a point p
of 5 and a vector v paralle]l to the plane tangent to 8 at p, [If you
want to visuslize (p,v) a5 an actual gecrnetric tangent vector to 5,
you should think of it et representing the vector whase foot is at p
and whose head i3 at prv,; ie our vector v iz the unique vector
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whese foot is et the origin, and which is parallel to the actual
gecmetric tangent vector. For exarnple, (p,v} = ((0,0.1), (1.0.0)
should ke visualized as representing the geornetrie tangent verctor
with foot at the north paje (D.0,1) of & and head at (0,0,1)+(1.0,0) =
(1.0,1)] A pair (pw] in T if celled a tangent vector to S at p. A
“zection” of the tangent bundle, or “vector field” on 5, is any right
inverse ¢ 57T to the "first” projection o{ SxRIDT=8, where Tilpw)
=p. le d5—=Tis s vector field iff for each P in 3, o{p) iv a tangent
vectar at p. If we denote by T = w1~ p) = {plx{v in R pruw=0}
the set of tengent vectors to 5 at p, then a section of T it & function
73— T such that for all pin 3, a{p) iz in Tp. A continuous vector
field iz & section @ S—=T whose composition (2.1 S5+ 5xRI = BI with

the zecond” projection m2'T— R (where mz2{p,w) = v), is continuous.
If 17 iz the set of all cantinuous vector fields on 3, then T is an
ebelian group under the following operetion: if oip) = {p,v) and ©ip)

= (p.w), then alp)+t(p) ={p.v+w), ie. we da the addition in the

tecond vanable. Now if T = {all continuous real valusd functions
f5— R on the spherel, T is a commutetive ring with identity, and
i= a U modute, where if a{p} = (p,v) then (f-a)(p) = (p, f(p)-vl.

If HCD 15 & hemisphere, V'Y the set of continuous vector fields on H,
snd Ty the ring of continueus functions sn H, then PH & Ty=TH iz 8
free Ty - module. [n general 5 = =T iif there exist two sections
3,7 in V such thet for every pin 8, «{p} and 1(p} are linearly
independent tangent vectors. There is m very interssting thecrem in
topology that says for every o in V, thers exists some p in 3 such
that gf{p) = 0; ie. there is not an evervwhere non zere, cantinuous
vector field an the "two-sphere”. Thus in fact not even one section o
ex1sts with ol{p) independent for all p, hence V¥ iz not isomorphic to
CxT le V iz not free over &. Since V¥ j= free over Every
hernisphere in 5 we can say 1 iz at least "locally fres”, howevear,

Exercise #132) Prove: {i} If there exist two sactions o.7 in 1 such
that for every pin 3, of(p) and 1(p) are linearly independent tangent
vectors, then IV = TxT. (G0 If H = {(x,v.,2): x@+ye+g2 = | and z 30 )
18 the "narthern” hemisphere of 5, then 'Y = TuxTH, with netation
as in the previous example.

6) An example fram number theory. rings of integers.
The three types of rings we have studied, Euclidear domsins, pid's,
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and wid's, are important, but unfortunately the bazic rings of
number theory, the rings of "integers, wiually do not belong to any
of these types There iz apother weaker property that characterizes
thern, the property of “integral clesure”. It K< are rings, an
elernent x of 3 is "integral over R" iff x satisfiez a meonic polvnomisi
owver B A ring B is "integrally closed” iff the anly elements of the
guotient field of R which are integral cover R, are elements of R
itzelf. Since the enly rational rocts of a mmonic integral polynornini
are integers, by the "reticnal reot thecrern”, £ iy integrally closed.
The same preoof used for raticnal reot theeremn shows that every ufd
15 integrally clozed.

IF QCF 1z a finite extensicn field, F i called &a "number field” and the
subhszet QOCF of elernents of F integrel cver £ iz called the ring of
"integers in FU. Il particular O iz s ring, in fact an integrally closed
noetherian demeain in which every proper prime ideml iz maxirnal,
{according to the ‘fundemental theorem of algebraic number
theory”). |t is useful to think of the length of a mexirnal chain of
proper prime ideals az the "dimension” of 8 ring, 2o these are "cne
dirnenzsional” integrally ¢losed rings] Since 2C€0, O is s Z-algebra,
but 1 fact O is a finitely penerated free F-module of rank n = [F4Ql.
For exarnple, the ring of Gauzsian integers Q1221 & 2, 1 CCKCF
are twg numbker fields with integers RC3, then I is also finitely
generated az B meodule, but not neceszernily free, VMore penerally, if
R 1z an integrally clozed noetherian damain with guctient field K,
KCF a finite axtension field, and RCS the integral ¢losure of R in F,
then T iz & noetherian integrally closed domain, and a finitely
generated R module, but not necessarily free unless R 1z a pid.
Recell the word "module’ was introduced to describe thiz example,
by number theaorizts in the 19th century.

§5) How to define homormorphisms en preducts, guotients.
Before we prove varicus R-rricdules are isamerphic to products of
cyelic mpdules, we need to know how to define maps in and out of
products end gquaotients. The facts are entirely analogous to ones
about akelian groups, as we have cbserved 1n several exarmnples
abowe, but we will bry to discuss them here more systematically,
First we gerneralize our earlier result o maps out of free modules to
show how to define mmaps out of a finite product,
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Froposition: If M1, . M; and X, are R-modules, there iz a natural
isomorphizrn Homp(TT M, X)) = T Hormp({M;,X).

In waords: defining & map out of a finjte product is «guivalent to
giving one rnep cut of each factor.

proof: To find this isermorphism, we follow Auslander’s advice: first
Just find naturel rmaps in both directions, then check whether they
are mutueliy inverse. The point is that since the itornovphism is
netural, the oniy maps you cen think of are surely the right cnes.

We define 8 map @ Homp{TTMLX) = TT; HomB{M; X}, whera f
g TV X, then () = fpd,...ps) with @iV — X definsd by pila;) =
w{0,.,8j,...0}% le just "restrict” y te ench factor separately,

The inverse is §£3:17; Horn R (vl X = Hormnpg{ TTi, X}, where Sy, pe)
= ¢ TIiMj— %, with pla1,...8:) = Tpila). le. Just add the separate
trnages of the coordinates. [This needs & finite product to werk |

Check: {l nnd ® are both R-module meps.

Eg M lp1,.ws). {41, . ¥:) srein 7T Homp{Mi¥) and & = (avq,... ;)
in TTiMi, then {0y, sy, bsllay,  as) = Zlpi*gixei) =
Epileid+I{ilei) = g1, . .olar iy, )i} Hence £} is mdditive.
Since [rp1,...rosdia) = Blreiled = rEgila) = -, ypeie), 0T iz
R-linear. We gmit the check for 8.

Cheek- §] end ® are mutuslly inverse,

If (i, @5t isin T HompiM, X then (8:0Ke1, . pe = Cdt, ...l
where ilaj} = (D{p1,. p)0...0,a8i,0,.,00 =

100 4pi-1(0)+@ilap)+ipie 1(0)+ . +pglQ) = pilay),

Thus (B+QNp1, . ps) = (@1, s

If @ is in Hamp(TT ML HD, @4 = {91,..ps). m = {a1,...8:) in 1T ;W15
then ((2BMp)a) = (DUS(p))ia) = (Ng1,.¢))a) = T; pilmi) =

Zi 0, .ay....0) = 9 (E{{0,. &, ..0)) = ¢la). Thus (L1=B)p) = .
QED.

Exercize #133) Check the mep & in the previcous proof is an R-
module map.

Rermark: The previous proposition is fdlse lfor infinite products.
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The next lernme describes meps into products.

FPropozition: If 1f M, M3, and X, are BE-modules, then
Homp (X, TT;M;) = TI; Hormnp({X, ;).

In words: defining & map into & product is equivalent to defining
one map into each facter,

proci: First we just lock fer some chvious maps, Given m
hamernorphism into 8 preduct, we can get & mep into sach factor
by projecting on the factor.

Hence if we let mT1iMj= M; be the projection on the ith factor, we
can define & map in one direction, as follows: & Homp(X TTiM) — TI;

HommR{X. M) is defined by B{g) = (miep, ., weoiph

To go the other way, given a meap of X inte svery factor, we get &
map into the praduct by viewing those as the component maps. e,
thiz is just as in caleulus where & "vector valued” function is given
by twe, three, ar n, real walued "cormnponent” functions, So we get
the mep §2.T1i Hampr{X.M;j) = Homp(X TiM;) defined by Rigp1, .. psdix)
= (ifx), .. psfxl),

wWe omit verification that @, {1 are R-module maps. [See Ex, 123

Check &, £ are mutuslly inverse:

(Eefddpq, . .ps) = O, .98} = (w1o0lp1,..pe), .. TeelMip1, .. ipa))
= (pd,aps), where $ilx) = (rieQpd, L pedd(x) = wmilp1(x), pslxd) =
ilx). Thuas (Selp1,.ps) =(P1,.bs) = {p1...ps).

Gle@ () = S3m e, omeeplind =2 {lm 1epMr), L (Teepiix]) =
Cmeleplul), . malyplul)) = plx) QED.

Exercize #134) In the specinl case of two factors, show the maps
€, {1 in the previous proof between Hornp (X MxN) and

Hernp(X, M) x Hormp (¥, N}, are R-moduls maps.

Remark: The previcus propesition is sty]] true for infinite products.

Mext we characterigce maps cut of gquotisants.

Lerntne: If NCM is a submedule, and ¢ M— X & medule map such
that @lN] = (0}, he any hemeormerphism of "prirs

Hompe{({M, N}, (X,00]], then ¢ mduces & unique hornormeorphisrm

o MIN— X such that p{{x)) = pix) for each %] in M/N.
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praef: Since, as an abelian group, M/N is the guotient group of M by
the subgroup N, we know thiz map is 8 witll defined group mep, so
we just need to check it is also a rmodule map. But for r in R, §{rlx])
= plrx]) = wlrx) = roix} = rgpflx)). QED.

Carallary: There is a natural injection Homp (MM, X} @ HomE (T, X),
csuch that Homp(M/N, X} 2 Homp((h, M), (3,0)) € Homp(V, X

There s no natural characterization of maps into a quotient, ie,
althowgh every mep X— M induces by composition u mep ¥X— M/,
there are maps X—M/MN which sre rot of thiz type, ie, which do not
‘lift" te M. |For instence, the identity meap Zn— I does not factor
through 2y — 2= Zy] Also different maps into ™M can become tha
zame map into MJ/M. [Bath the meps x—nx and x—0, from 247,
becorne 2ero Bs maps 2= Zn )] Thus slthough there is 8 natural map
from HomR (XM}~ Homi (X M/ M), it 13 nejther injective nor
surjective.

We do have analogs of the usual isornorphisrn theorems:

Lernmmue: (33 I M—-N is m surjective R module map, then

the induced mep oM/ kerig)— N is an isornorphism.

(ii} 1 B.C ©M are submuodules, then the map B— (B+S)/C induced by -
inelusion B—B+C, has kernel BNC, hence induces B/ABNAS 5 (B+CI/AC.
(1) [f CCBCM are submodules, then ¢ M— M/B implies CC ker(p),
hence mduces MAC= /B with kernel BSC, hence (M/CYIB/D) 5 MAB.

proof: Useful exercise.

Mowr let's prove that “rank” of a finite free module is well definad.
Theorem: lf Rtz a ring and RM = R™M as R modules, then n = m.
proci: We know thiz result for vector spaces, ie if R iz e field, since
this says dumension iz well defined. 12 & vector spece issrmorphisrn
rmuast carry a basiz to a bazis, so this follows from the theorem that
all bases of @ given vector space have the same cardinality. Let's
try to redece the present staternent to the cese of a vector space
over ® field The only natural] way to pass from sn arbitrary
(alweays commutative with identity) ring B to a field, is to mod out
by & maximal ideml, so jet ICR ke meximael, 1f RP = R™, then I.RA
® [-RM, whence (R/AD & RO/IN =2 RO/LLEN 5 RIO/I-RIM & (R/1M

+

This proves (R/T = {(RAYM az R module:, but since the ideal [CR



3k

kills bhath of these modules, they are also RS modules, apd thesa
meps are R/] isomorphisms. Jince R/T is & held, (RN and (R/1D)T
are isormerphic R/ vector speces, of dimensions n, m respectively.
Since & vector space isomaorphizm carriss & basis into & basis, they
must have the sarme dimension, te n = m. QED,

Exnact segquenceas:

Inn our praef of the decomposition theorem for finitely generated
abelian groups, we have found it usefu] an osccasion to construct
compositions of maps ¢ty such that kerf{y) = Im{y). This
rhenemencn 15 so commaonly encountered that a speacial name haz
been given to it: "exactness’. We examine this concept brisfiy,

Definition: 4 sequence of R-homornorphisms . —+A—=B—=C— __ iz
called "exact gt BT Iff the irmage of the lncoming map equals the
kernel of the sutgsing map, ie if Im(A—B) = ker{B—C}. A sequence
15 sunply celled "exact” iff it 1z exact sverywhere.

Exercisa # 135} If A BC are R modules, prove:

(i} 0—A—E is exact mt A, iff 4B is injective.

(i) A2 EB—0 is exact at B, iff A= B is surjective.

{itl] Two meps g A— P and B—C, vield an exact sequence
O—=+A—=B—=C—0, ff p:A—P 15 injective apd 4 induces an rsomerphism
BrfplAl = C.

fiw) f D~ A= Az— . — Arx— 0 15 an exact sequence of finitely
generated abkelian groups, prove the "alternatitig sum” of the rapke is
zero, ie Jrkfay-rklAz)l+rk(Az)- ... srkiAp)] = @

587 Decomposing finitely generstad modulez over pid.s.
We will prove that a finitely generated modules cver a pid. is
izornorphic to s preduct of cyvelic medules, the kest generalization
possible for the fundemental theorern of finite abelian groups. In
general R denptes s pid. in this section unless we say ctherwise.

Thecrern: 1f R iz a pid. and M i3 a finitely generated B module,
there exizst unigue integers szt 0, and a unigque nested zequence of
proper ideals R2(d1}2(dzi> . 2{dy), such that

M = RB% x TTi=1 « RAd;).

Terminclogy: The integer = is ¢alled the "'rank” or "R-rank” of M.



37

proof of Uniqueness: We need to generalize the concept of
elements of finite order so we can distinguish the free” factars
isomerphic to R from the “torsion” factors 1somarphic te B/ (d).

Dafinition: An elernent x of M, & module sver any ring R, is called a
“torsion element” iff there is a non zero element r af R such that rx
= 0. If R3annix} = {r in R: rx = D} is the "snnihilator ideal of x,
then x is & tarsien element iff annix) = {0}, We dengte ann{M) =

Mx annix). the ideal of elernents annihilating everything in M.

Exercize #1368} {1} If R iz & domain, and M iz an R-rmodule, prove
the subset of torsion elerments of M forms a submodule, t{MIC M.

(i) Give an example of an R module M whose subsst of torsion
elernents is not & submaodule, {(end R iz nat & domain).

(iii} Prove, if R iz & dornain, and M = RS « Tj=q 4 R/{d;), where for
each i, (di) zR, then tIM) = {0} = Ti=1 ¢ RS

(iv) If R is & domain, and ¢ M—N j: an lIsomorphism, ()] = (M),

Mow assume ¢ = RS x TT3-1 + RAG)) = RY Mi=1 . Rilej) = N,
it an isomorphisim, Where again R is a pid By exercise #125), 4
restricts to an isomeorphism M) = {0} = TTi=1_y RAd)) =

0 = Mj=1 v RAej) = t(N). Thus g induces an isormarphizm of the
quetients MM & N/AUN), hence R® 8 RY, Then & = v, by the last
theorem of the previous section, (that the rank af » finite fres
rnodule 13 always well defined). Thit proves the unigueness of the
"free part’ of M, ic. of the integer 2 in the theorem.

To prove the unigueness of the torsion part, we use tha idess frorm
the proof inn the finite case, ie anelogs of the Sylow p-subgroups.
Definition: If r = 0 iz an element of R, 1ot Mir) = {x in M- rx = o},
the "r-torsion” of M, (s submodule), and let My = Uppg M) be the
set of elernents annihilated by powers of r, 8lso & submodule.

Definition: [f R is & pid, end x an elernent of an R moduls, the
"order of x" means eny generator of the ideal anni(x). So r is the

order of x off anni{x) = (rICR.

The "order” is no longer an integer but en elernent of R, and is anly
defined up to multiplication by units of R, [f piz prime elernent of
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the pad R, and M 12 an B module, then the p=torsion submodule
Mip) = {set of elements of order pl, and Mp = {zet of elernents whose
order is m power of pl. Thus Mp generalizes the Sylow p-subgroup of

s finite ebelian group (when p is & prime integer).

Exercise #137) Assume R 12 82 pid and p iz a prime elsrment,
If M 2 AxB, prove:

(1) Mip®) & A{p=)xBl(p?] for all 5;

':11} Mp = .L"'ip M E'F..

If dis & nen unit of B, M = R/(d), prove

(iii) af pfld then M(pT) = R/ApT);

(i) if prld but pr*l{d, then My = Mip!) = RA(pT).

To continue the proof of uniqueness of the torzion part of a fin. gen.
rnodule over a pid, let A = Tliz1 2 RA{) = TTj=1 » Rflejl = B,
where djldj+], and E_i|ﬂ_1*1- We weant to show that t = v and that (d])
=f(egd for all 1 4 i ¢ t. It iz emsy to show the srmallest ideals equal.

Exercise # 138} With the assumptions of the previous paragraph,
prove. (i) Ap = {0} iff pldt, and By = {0} iff ples;:

{ii) these ideals are equal: (di) = ann{A) = ann(B) = (&)

(ili) A = B implies Ap & Bp.

To shaw the other ideals (d;) are (g;] are equal, we will show the
gererators di |, ej, have the same prime factors, So let p ke a factor

of dy = u-evy, assume pri |dj but pritl } di, and pEjlej but p5tl Iej.
Ther by the previcus two exercises, sindté A & B we have

TFi=1.x RAPY) 2 Ap = Bg & Tj=1, v R/ApS)). where rj, 85 2 0.
Moreover, since 2ildj+1, and ejlej+1, wa have pli | pli+1, and

pi) | p%i*l. ie ri ¢ ri+y. and 5L £jel.

Lemra [f p is & prime element of R (a pid], if

Miz1. & RAprid =2 Tj=1_ p RApF). and 1 5 v req, 1t 55 ¢ 5541,
thenp o« = p, and far all 1 ¢+ 1+ @, T = 5.

proof: First we prove o = p. If we denote © = Thi=z1, o RARFi), and
D= Wji=1_p RA(p5)), then by the previous two exercises, Cx D
irnplies Ti=1 & R/Ap) = Clp) & Dip) = Tj=1_p R/(p). Fince in a pid,
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every prime tdenl is rmaximal, R/{p) is & field and thus Cip) iz w
vectar space ever RAp) of dimersion &, while D(p) is an R/{p) vector
space of dirmension p. By invarience of dirnension of vector tpRcEes,
= = f. Now we can finish by induction on re. le if ro =1, then ail
ri=l,mnd C = C{p), 20 D = Bip}, hence sl 55 = 1. QED for this eae.
If we heve proven the result for rg < n, and if we heve ry = n, then
censider TTi=q o R/ApTi~l) & ¢/clp) = D/D0p) = TTis1 .« RApSi-1),
By induction on the largest expanent occurring in the left module,
we have that on both sides the same number of non Z2erc Exponents
accur, and those exponents ere equal. Hence mlsg the same riarnber
of zero exponents accur. Thus rj = 35 for all i QED lermnma,

Agein let A = Thi-q + RAd)) & lT_j:l___U RJ‘I(EJ} = B, where djldi+1, and
ejlej+1. We want ta show that t = v snd that {dj) = {ej) for 1 ¢ i ¢ 1.
We know (dy) = (&), and since dilde for al] i, and ejley for =il j, the
prime facters of the {dj} are exactly the prime factors of dt = the
prirne factors of ey = tha prime factors OCCUrring in the fejl. we
have just shown that SVEery prime p cccurs in the same number of
factors of A as of B, end with the same exponents. Since & prime
tactor of df pceurs in all ¢ fectors af C. It alsg ocours in t factors of D
Hence t 1 v. By symmelry v ¢ t sot = v, Sirce every prime
Oreurs with the same exponents in the faciorz of O and of G, the
elements di , &) must be associates. Hence (dj} = {e;) for all i,

QED for unigueness of decernposition.

Proof of existence:
It M is & finitely generated madule over E,a pid, then there is an R

rriodule surjection o RfM -+ M, for some m. Then M = R™ikeria),
where ker{e) is a submodule of R, Tg reprezent this submodule m=
the image of another such map we need the submaodule kerf{o) to be
finite]ly penerated.

Lemma: Every subrmodule of RM is free of rark ¢ m, I Ris a pid.
procf: The proaf is the same as far I, by induction. la, if m = 1, &
subrodule ACR iz an ideal hence principal, hence sither = {0} mnd
thus free of rank zero, or = {x) for some x =0 in E. In the second
case, R—(x} taking r to rx is an isomorphista and (x) is fres of rank

one. For m » 1, corsider the projection map RO =R whare
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misq, %) = ¥, and restrict it toa submodule ACTRE™, Then we
have m&—=R, and lmi{w)CR iz an ideal hence free of rank ¢ 1. Then
ker({n) is & submodule of RM~1«{0} 2 R™M~1 30 by induction ker{m}
iz free of rank ¢ m-1. 1f Imiw) = {Q], then & = ker{w) is fres of rank
t -1 ¢ m and we are done. U Imin) =2 O, then Imi{w) & R, ker{m) =
Et for some t ¢ m-1, end thus we have an exact sequences
Q—aRt—A—R—=0, wheret : m-~1. We claim the sequence splits, 20
that 4 = R'»R = RY 1 By the next exercise, it suffices to show the
surjective mep m A—R has a right inverse. To define one, jet & be
any elerment of A with wm{a)l = 1 in R. Then there iz & unigque R-
module map R— 4 with {1} = a, namely J{r) = ra. Sines nla) = 1,
mira) = r, hence wiy{r)) = r for all rin R, and ¢ is right inverse to .
Then A = RY*1 where t+1 i m. QED.

Exercize #139) Prove: for any ring R, a turjective R-module map
fb=PB splits, 1. A = Bxker(f), if f has & right inverse,

Mow we have W & BRIt/ ker{s), and kerfe) = RN for some n 2 m.
Thus Lthere iz an injective B-rnodule map RN —=RIN with M &
RMAmle), and  is given by an mxn metrix [g] with entriss in R
The follewing proposition would cornplate the proof:

Proposition: If R is apy pid, A = R7, B = K™, and g A—+B iz a
homomorphizsm. there exist isomorphisms c:A— A, and 1 B—B zuch
that the cermposition (Tegeg)] = pA— P hes a diagonel matrix, in
which eeach disgonal entry divides the next.

Azzurring this proposition, we have M & R™M/Im(g), whers Imip) is
generated by {d1,0,..,03, (0,420, ...0} (00430, 0}, ..

(0, .. 0dn0,. . 0) Thus =

fR=Fx =RIMdiRxdzR=_ =dR={0}x =0} &

RHd1)=RAdzx  «RAAR)xR«,, xR, where each dj divides dj«1, and
there are rm-n factars of R at the right 2nd of this preduct.

MNaw let's prove the previous propesition.

Ceza (i) B iz a Euclidean demain:

We have already given the proof in this case in zection §3, by
diagonalizing the matrix using "elementeary meatrices” corresponding
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ta elernentary row/eslumn operations, and interpreting those as

isomorphisms of RM, RN

Caze (ii) R ix a pid.

We will egain prove the metrix can be diaganalized, but we will ke
chliged to introduce en edditicnal €less of matrices, which one may
call “secondary matrices”. The point is that although we do not have
the Euclidean algarithm, and thus canneot construct & ged by
repested subtraction using elem#ntary operations, we still can find
an invertible matrix which, given twa non 2ero entries in 8 row or
colurmn, will replace one of them by the god of the twao entries. The
sarme disgonelizatian procedure as before will then work sgain,

Disgonelizatien algoritnmm [f there are no # 0 entries in the matrix

l¢], stop. Then M = R is free, isomerphic to s product of copies of
the free cyclic module R, If there iz & * 0 entry, by interchanging
rowts antd colurmng, bring one with the fewest number of prime
factors to pesition (1,1), (upper left corner), angd cell it a. If there ix
another = 0 entry in the first column, bring it to position (£,1) by
sn interchange of rows, and call it b, Now we wapt ta replace a by
c » gcdim,b) To do this first recall that since R is a pid, the god of
a.% is the generator of the ideal {(a.k) = (g}, Hepee we have o = axtby
far sorme x.v. and a = cai, b = chi, for sorne aq, bl. Hence 1 =
aix+b1y, and {abl/c = a1-b * a-b1. Conmder the following matrix

X ¥ . 4
[ , T . HMNete that this matrix multiplies the column vector [b}
Tt

e _ )
into the calumn wector [ﬂ] Thus if we l=t [7] be the squere metrix

with this Z2x 2 matrix in the upper left corner, and otherwise looking
like the identity matrix, left multiplication of aur matrix by {a] will
replace the first two entries in the first colurnn of lo] by the entries
& ¥

] 6% InVerse, an inverss
x
1

c. 0 [Since the =2 matrix above has [

for |o] can be constructed analogously by placing this matrix in the
upper left corner of the identity matnix)]

If there is ancther ¥ 0 entry in the first calurnn, say d, interchange
rowe to bring it to position (£,1). Repesting the previous procedure,
replaces entry (1,17 by the ged of ¢ and d, and again makes entry
(2.1} equal to 0, Froceeding as befars, we sventually replace all
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entries in the first calumn, except entry {1,1), by 0.

Then we work on the first row in an analopous way, then return if
necessary to the first column, aelternating as befere. This tirne the
process must end because the {1,1) entry is continually being
replaced by s proper factor of the previcus (1,1} entry. Since an
element of a pid. has only a finite nurmnker of prime factors, this
process cannat g on for rnore steps than the number of prime
factors of the original (1,1) entry. Thusz eventually we haue all
zeraes in the first raw and first column, except for entry (1,1).
Then we rmove to the submatrix of rows end columns after the first,
and repeat the procedure. The rest of the argumeant proceeds in the
sarne way as for £ QED for existence,

This completes the proof of the decommposition theorermn for
finitely penerated mopdules over a pid.

Using the theorem. we can strengthen the lerama in which we
proved that s submodule of a frae finite module over & pid. is free:
Corollary: If NCRD iz a subrmodule of a finite free module over a
pid, themn there iz a free basis {x1,.. . xnt for RM and & sequence of
ron urats of R, {(d1,...dg), with dildj+1, unigue up to unit multiples,
such that {djxi. d2x2,. ... dsxs) is a free basis of I

proof: In the procf af the theorem we showed how Lo realize a
subrnodule i as the image af & map g RS—=RDY, and how to find
sarmorphisins T RSB and o R3—= RS such thet if ¢ = (Tegeg), then
Irmf{gl = diR= .. dgR={0}= {0} RM. It follows that the isomorphism
1 1 RN RN carries the standard basis {ejlj=1... n of RN to a basis

ixj}j: 1.n of R? such that the basis [djejlij=1 » of the submodule
!m(ﬁ]‘ iz carried to the barsis {djﬂj}j: 1..s fer M. QED.

Rermnark: Since & field iz a pad, the thearem gives anaother
reminder that all finitely generated k-modules are free when k iz a

field, ie & finitely generated k-vector space 15 = kP for soeme n.
[Since k haz no deals, &8 cychie k-medule 13 £ k, 5o 8 finite product of

evelic k-modules is = k)

Example of the uniqueness procf procedure;
The paint of unigueness is to show that if A = TTj=1_t RS{d;), where

djldj+1, end no d; is & unit, then the prime factors of the 4,
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including multiplicities, can be recovered just from the izomorphizm
class of A. The rnethod is to consider, for each prime p dividing the
generator of the ideal ann{al, the dirnension of the R/(p) vector

spaces (pFA)p), of elernents of order p in the submaodules prA.

Suppose & = £zx2gx21gxEep 2360, Then the idesl annlA) =

(360)C 2, hence its generator, is deterrmined by the isomeorphism
clazs of A, Thus we recover the "largest” of the d;, 360, or
equivalently the sraellest of the ideals (di}, from the isomorphism
tlass of & Now we can recover sll the prime facrors eccurring in all
the di just by factoring this cne. e Since £,6,18,90, all divide 360,
we get all their prime factors, but not the rmultiplicities, from the
pritne factors of 360 = (B)(3)(0) = (23XEN32). Wow for each of thess
prifries we atk for the subrnodule of elernents of thet order in A.

The elerments of order 2 in A, ie. for which (2)22 is the snnihilator
iden], are those elements of the product LzxIgxZ21g=Z9nxT360, such
that every entry has order 2. Since in each factor there are exactly
two such elements, ez, the elernents of order 2 in Z90 are |0] and
145], thiz submodule is A(2) 2 Z2xZ2xT2=xF2x22, Now we do not
want ta count the slerments as we did when working only over Z,
since these modules will not necessarily be finite over any pid, but
this iz a finite dimensional vector spece over 22, hence the
dirnensian 1s determined by the izomorphizm class of & The Z7
dirnenszion of this space, namely 5, gives us the number of fectars in
the preduct A = Z2x2Rx2 1822902360, which are divisible by 2.
Looking at the submaoduies of elernents of orders 3, and 5, we get
F3x¥3xFa=¥3%, and F5=Fg recspectively. Thus there are four d;
divisible by 3 (the last four}, end two di divisible by 5 (the last two).
Jince there are more d; divisible by 2 than by any other prime, the
nurpnber of such dj, nemely 3, iz the total number of factors dj. So
we know now there are § d; in all, all five are divisible by 2, the last
four are divisible by 3| and the last two are divisikble by 5.

Mext we want the exect multiplicities for cach prime. To find the
number of dj which are divisible by 4, we logk first at the module
242 [A/A(Z]) = Za=FoxZa5xF 180, and then at the subraoduls of
elerments of arder 2 in thiz rmodule. le we look at (ZA2) =
(AFALZN(E) = Z2, since the anly 20 element of crder 2 here is

([0LI0L[0).[20]}. This tells us that 2€ iz & Factor of exnctly one of the
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di Hrernee we now know there are five di, and in the first four of
them Z occurs with multiplicity exactly one. To see which d; are
divisible by 2%, we look at 224 & AFA(ZZ) = Fa«ZgxZ45xZ20q, and
then at the elerments of order 2 in this module, (22A)2) &
(A/A220(2) & Z7. since the only z0 element of order 2 is ([0, 10],
0], [45]). Thus the fifth di is also divitible by 22, so no dj is divisible
by exarctly 22 We repeat this procedurs mgain, and get Z3A &
AFAZHY = ZixTaxZq5=Z45, which has no nontrivial sleament: of
erder 2. Hence no dj 1z divisikble by 24, zo the fifth di iz divisikle by
exactly 23

Mewving on to the factor 3, we copsider 34 & Z2«E2xIa=E30=2120.
whose submodule of elernents of order 3 ix (FANI) & FIxFAx F3.
Thus only the last three d; are divinible by 33, hence dz 15 divisible
by exactly 31 Next we consider 324 = L2xX3xA2x210%x240, and
hence (3243 2 {0}, Thusr no &; is divisible by 33, apd so d2, d3, d4

are divisible by exactly 3£
Az for the prime B, we know dq, d5 are divisible by 5. We have DA=

ZzeZarZigxZ1gxZ¥z, (5ANE) = {0) and no dj is divisible by 52

Thws the seguences of prime power factors cccurring in the five dj
mre (2.2,2.2,27), (30,3,32,32 32), (50,57 50 5 5}, Multiplying these
seqgurnce: togpether recovers the dj, up to units, 1e. d1 = 2+1:1 = 2, d2
=231 =6 d3= 2321 = 18, dg = 2-32.5 = 90, ds = 23.325 = 360.

A mermerable way to display this data 1y in 8 tehle of edponents for
the various prime fectors of emch d;. One can view the proof of

unigqueness as the reconstruction of the exponents in thiz table from
the dirnensions of various p-tersion vector spaces azzociated te the
glven module.

2 3 35
R
li] II 3| 5'1
4 2 3 5
4 ¥ 1 7

f.
i
b
L

L
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Te recover the dj fram the teble, just multiply together the entries
in each row End of example.

I the next section we apply the cyclic decornposition theorerm to
finitely genereted torsion modules over the ring R = k[X].

§7) The “Rationul Cancnical Form®™ of & metrix for a linear
transformation of a wvector space.

The work we put into proving the genersl structure theorem far
finitely generated modules over pid.'s will be arnply justified in this
sectiors when we obtain s beautiful and useful structure theorem for
the matrix of any linear trapsferraation of a finite dimensicnal
vector space over a field

Let f = an+a1}¢'az}{2*....ar-l}{f'1+}-:r be any rnonic, non constant
pedynormiel over a fhigld k, and consider the following matrix Cf

0 0 000 -ua
0000 -

o1 0ao0 - ..
azsociated ta F ﬂz s Cf. This iz called the

G o 0o 1 0 -a,
00001 -a.,

- "compenion matrix” of £

We will prove that each rmatrix in Matnx nik) is conjupate to exmctly
ane “block” matrix in which the blocks along the disgonal are all
cornpeanian metrices such that each associated polynomial divides

'[a::,_] 0 0 O

0 [ch] 0o a

the next. ie one of form , where f1l#2/[..).

0 o o]
First we review how a cheice of bazit yields a matrix for a maep.

Bases, coprdinate izomorphisms, snd matrices
Recall thet aver any ring R, an msm metlrix iz equivalent ta an

endormor phigm R —RID amd that an R module M iz free of rank m,



46

ff M hes a free basiz of rm elements {x71....%Xyn). We want to recall
how an endomorphism of eny free module VM can be repreasented by
a mmatrix, once an {ordered) basis is chosers, We meay be careless, as
13 often the ceze, and say "basziz” when we mean “ordered basis”,

Lernma If W iz & free, renk m, R-module, then an ordered basis of
M iz equivelent to an isocrmorphism o R = W,

proct: Since {ej) is e basis of R, and an isomorphism cerries a
basis to a basis, any isornorphism o RO—= M carriss the ordered basis
iejl to an ordered basiz {x} of M, where xj = ple;). Conversely, if

% jlj=1,. re. it an ordered besiz of M, the map o RM— M defined by
wleed, @) = Ea.ljnj, iz & hormornorphism by the usuel properties of
eddition and rmultiplicetian, is injective since {1J}J': 1,..,m iz
independent, and surjective since {:-:_j]_F 1,...m. generates V. QED.

Remark: The isomorphism o RT—= W is sometime: called
pararmstrization of M, eand the inverse isornorphism ¢"1 M—+RD &
coordinate rnap far M. In particular, if ¥ is an element of IV, the
vertar o~ 1(x} in RM iz called the coordirate vactar of ¥, with respect
to the basis {«j] of M giving rise te the isomorphizm.

The matrix of an endomorphism, associated to a bazis

If M —N is any endomorphism of 8 free rank m madule M, and S
= {xjlj=1_ ... m. is an ordered basis of ¥, by the previous lemma we
heave mutunlly inverse isocrmerphisms g RM oM, and o~ 1 M—Rm,
Hence the composition 4;; = {a'j-n-;pvcr}l:Rm—* RIN heas o matrix [E}L
which we mey also write as [gls or simply [g), if the basiz used to
canstruct it seerns unimpartant. This iz the matrix of ¢ determined
by the ordered basis 5. You should canvince yourself that the jth
columnn of [ipl 12 the coordinate vector of g} with respect to the
basis {xj}. le {p] = [2ij] iff for all j, ¢lxj) = afjui+  sagjum.

Mew it freguently happens that M=R™ za that ¢ already has a
"standard” maetriz, namely the one determined by the standard
kasis {ej}; but thiz matrix may not be particularly useful, sa we
mey wish to choose anpther hatiz which vields 8 nicer matrix for p.
l& matrix is nicer for example if it i easjer to calculate with, or if it
reveels more casily the properties of the map ¢ it represents] In

thizs case. the isomorphisms o, 071 will thernselues be glven by
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inwvertikle metrices, say A Al and we see that the new matrix for
P, [;E-] = A ll¢la, the cne associated to the new basis {:n'.ji-, is
conjugate to the eriginal one. [You should check that the jth
column of A is the standard coefficient vector for the jth vector X}

af the new basis of R™M] [n this case, the set of matrices for g
chteined frorm ell possible bases of R it precisely the conjugacy
class of [p] under the action of GLy(R) = Autp(R™) on the ring

Mﬂ.tm xm{R:' = EﬂdR{Rm:‘.

Exercize w1d40) Ler T be the linear trensformation T:ﬂz—l EDE whnosze
5
matri¥ in the standard basis is [1 “4]. Shew all calculations and

find the matrix for T wrt the ordered basis {{1 -2}, {3,-1]].

Remark on terminelogy: The relation B = A“1BA, which we have
called “conjugaey”, is usually calied “similarity” in linear aigebra.
One difference which meay justify the distinetion is that in linesr
algebre we do not require B to be invertible, just A, in this relation.
le_ we have a proper inclusion AutR(R™) € Endr(RM), of the group
of urits into a ring, end the units are acting by conjugation an the
whole ring, not just on the group elernents. 5o morg accuratgly, we
should say sbove that two metrices represent the sarns linear
transformmation, but 1n different bases, 1ff the matrice:s are sirmilar.

The application we present rnext of these ideas will exploit the
relationship between the k vector space structure and the k[Z[
rmodule structure of a finite torsion k[X] module.

kiX[-rmmodules, viewed asz pairs (M,T)
Let M be = finitely generated k[X] module, iz let IV be an abelian
group plus 8 ring hormomorphism klXl— End(M}, where k is s field.

Then the restriction of this ring mep te k gives s ring map
k— End{M), hence s k-~wectar space structure an M. More simply, if

vou can multiply elernents of M by any elements of k[X], then in
particular yau can multiply by elements of k. The suhring
Endp (M) CEndilM} is the ring of k-vector space endomor phusms of M,
ie the proup endomorphisms: that corprmute with multiplication by
elements of k. Since k[X] is & commutetive ring and klX]— End(i) is
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a ring homotnorphism, ¥ commutes with elements of k both in k|X]
and ir End(M), ie kl¥| sctually meaps into the subring Endg(vi},
Thus not anly is M s k-vector space, but the image of ¥ in Endg{(M)
iz & distinguished k-linear transformation T of M. Since conversely,
if M is & k-vector space and TM—DM a k-linear endomeorphism of M,
there is m unigue ring map k(X +Endg{M) teking ¢ in k to c-1d, and
7 to T, s klX] module is equivalent ta & pair (M,T) where M iz a k-
vector space, and T is & k-endomorphism of M.

1B ias = k[X] roodule and NC iz s submeodule, then N iz clozed not

only under multiplication by ¢lernents of k, but alzo under
multiplication by X, ie under the action of T. In other words,

T{NICN, and ¥ iz & "T-invariant subspace” of M. Thus if a kiX]
rnodule is interpreted as a pair (M,T) as above, then a kiX]
submodule of VM is & T-invariant subspace NC V. Finally, a cyclic
k[¥] rmodule is & patr (M, T) where M & k[X)/(f) for seme polynomial
f. This iz a ki¥) isomorphism. which means it is & k-vector space
izormeorphism such thet multiplication by ¥ in k[XI/{f) corresponds to
action by Ton M. Ie if v in M correspands te [gl in k[X]/(f), then
T{v) corresponds to X gl in k[ZI/{F). In this case, if v in M
eorrespends to |1] in k[X]IAF, then TT(v) corresponds to X0, Thus if
f has degree 5, the standard k-basis [[1],IK], . [25-11) of k[X]/(f,
corresponds ta the k-basjs {v, Tv, Téw, T8 lu) af M. A eyelic k(X]
module M is a k-vecter space M with an endamorphism T which
adrits 8 be=zis of this form. [If ¥ has such & bagiz, and if T =
~ogv —o1Tw - mxg-1T5 1y, then M = kiX]/(f), as k1X] moduls,
where f = eprec 1M+ +og- 1M 1ex2]) If =0, then MzklIX], and hes

an infinite k-basis af farm (v, Tv, T2v, ... T, ... 1.

The minimal polynomial of a finite dim’l k-endomorphism:
Now let M be & finitely penerated k[E[ module, wwhich is thus
isprnorphic a5 klX] module, and thus alsa as k-wvector space, Lo sorme
finite product of cyclic k[¥] modules M = (k[XDM « T7; k[X]/0£;)
Sirice the facters of form klX] are infinite dimensicnal owver k, and
those of form k[X]/(f;) are finite dirnensicnal, this it a finite
dimensional k-vector space if and anly if as a k[X] module, it i5 a
torsion medule. Thus the study of pairs (M, T) where M is & finite
dirnensional k=vectayr space and T s an endemerphism of M. s
equivalent to the study of finite torsion E1¥] rmodules.
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H M= 11521 n klX]/(f;) iz = torsion KIX] rmedule, where each fjlfj+4,
then we know the annihilator ideal of M iz (fp]C k| X], Since
rrultiphication by X corresponds to the endormmerphismm TV =M, and
multiplication by fn(X) kills every element of IV, this means thet the
k-endomorphism falTiM—M iz identicaliy zera. We say thet T
satizfies the polynomie! fiu(X), end since this is the polynemial of
least degree that T satisfies, fp 15 called the "minimal polynomial™ of
T. Thus given a pair {M,T), where IV iz finite dimensional as a k-
vector space, the minimal pelynermial of T iz the monic generator of
the kernel of the szzociated k-slgebrs map k[X]—-+Endy{M} which
takes =T, and fram the decernposition above we knpw it has
deprees ¢ the k-dimenzion of M.

Recall that the annihileter of e finite abelian group M is the least
corrrmon multiple of the orders of all the elements, and if

MzTl;z1 « £/ni. then ann{M] = ngx. In sur casze, every 20 element
v of the fin. gen. torsion k[X]-module (M, T} iz killed by rmultiplication
by zaome meonic palvoominl |, of least degree in k[X], If zuch an f is
called the arder of v, then the minimal pelynornial for T iz tha
rmonic least comrnon multiple of the crdersof all vin M. 1EM =
k[X]/(f] iz a cyclic torsion k[X] module with generator v, then the
order of v = f = the annihilator of M = the minimal polynomiel of T.

The raticnal cenconicel matriz of an andornorphism

Let (M. T) be anv finite dimenszional k=~vector space, plus an
endamorphism T, viewed az B k[¥] moduls, and let I = TTJ H}{]f"[fj}
be an izomerphusm as k[¥] modules, where each fj[fj+ 1. Then each
submodule k[X]/{f;} = Nj corresponds to a k[H] subrnedule of M, ie. =
T invariant subspace NjCM. To get the “rationel cancnical” form of
the matrix for T, we will choose 1 each subsprce NJ', the k=bazig
corresponding to the standard k-basis of k[X]/(f;).

Solet f1 = BptaiXs tEr-1XT1eXT, and let {u,Tv,Téw .., TT 1y} ke
the k-basis af N1 correspanding to the k-basiz [1][X], __IXF 1] ot
k|IM]F{i1). To form the matrix of T; = the restriction of T to Nj,
associated to this maetrix, we let T sct on the jth basis vector, and
axpand the rezult In terms of this basis, and put the coefficientzs in
the jth column of the rmatrix. Thus the first basic vector is v, apply
T to get T, and expand as Tu = 0w + 1.Twv + 0:TEv » _ +0+TF 1y, 50
the coefficient vector is (0,100,907, and this is the first column of
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the metrix  The second basis vector is T, applying T gives Tv,
which has expansien T2v = O-v + 0-Tv + 1:T2y + 0Ty + 4 0-TT 1y,
so Lhe second column wector is (0,0,1,0,...0). Continuing in thiz way,
vhe r-1st column vector is (0,..,0,0,1). The last column looks
different frerm the others, since the last basiz vector vector is Tr- 1y,
mpplying T gives TPv, and since we know f1(T) annihilates N1, the
endomorphism agl + alT ¢« azTE + .+ ar—iTr'l + TT is identically
zerg on Ni. In particular agwv + a1 Tv + azTEv L ur-j_TT‘iv « TTy
= 0, so that TTy = ~agv - ajTv - azTZv - .- ar- 1T~ 1v. Thus the
lmst column is the cosrdinate vectar (-ag, - a1, - a2, - ...~ ar-i}
Therefare the matrix of Tj in this basis iz precizely the matrix we
called the “companion metriz” of f1-

o000 G —a

1 000 0 -a |
O 1 9 00 -a
I==iCr-l
o001 8 -a.,
000 e
Contimuing, we do this for eech j = 1,..n, and take as our haziz for
M, the uruen of these bases for the I'-Ij_ Thern the szsocimtad "rational

canonical” matrix for T is the following block matrix:

fc,] o o 0

0 [Ch] o 0 , where f1lfz2l.. Mn.

o 0 oG]
It follows from what we have said above, that every m»m matrix T
is similer {ie. conjugate) to an mxm matrix in this form.
Conversely, if T iz sirmlar to such a matrix, then the pair (k™M T) js
isarmorphic as k{X] module to the product Mi=1..n k[¥1/(f;}. By the
unigueness for the decornpoesition theorem, a given (mxm) matrix T
iz conjugate to exactly one (rmwm) matrixn rational cancniceal
forrn, ie. to exmctly one hloek matrix, whose blocks are companion
rnatrices, such that the asseciated polynomials divide each other. In
particular we have & unigue explicit representative for wach

conjugacy class of the group GLmlk) = Autlkmy.
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Exercize w141) Write down the 3x3 compenioh matrix C of the
polynormial f{¥) = %7 and prove by direct computation that w3 i
the mirumal pelynomial of T, le. prove that C2 = [§], and that
untess o« p.¥, are all zercin k, then o-1d * a-C « ¥-02 = [0).

Exemple of retional canonicel form:

Suppose we can show that the par (W, T} is isomorphic as kIX] -
medule to the following preduct of eyclic kX1 - modules:
elMIZUR-23) % (KIRIAUR-2HX-3I2) x kIX]Z((X-2)2(X-3)2).

Then there are three "invariant factors' for (M, T), which determine
(v, T) completely: f1 = X=2, {2 = (e 2UN-F2 ) and £7 = (M-2)E(X-332
The last of these, 5 = (¥X-212¢{¥-3)2), is the minimsl polynomial for
T. which we may denote pT. or uTi¥). To get the rational canonical
farrm of [T], we first rnultiply out the invaneant factors to find their
confficients: f1 = ¥-2, f2 = ¥3-8X2+21%-18, and {3 =
wd_10M3+37RE-BOK+I6, if | haven't made a mistake. Then the
rational cenonical form is & Block matrix with three blocks, each
block being the cormpanion matriy for one of the=ze polynomials,

Remembering that the right-mast column is the negative of the
coefficients of the pelynomials, we get the following 8x8 matrix for

[T]. where all Blank spaces are filled in by zeroes;

2
Do 1%
oo -2
a1 4
o oo -3 Tl
1 0 0 60
01 0 -37
3 ¢ 01 10

ln the next section we will see how a slight variation on this therne
yiclds the simmpler, rmere informative, “Jorden' metrie For T



