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8} Primary decomposition and Jordan cananical form
whenever the rninimal polvnomiol w of 8 k-hnear endomerphism T
factars completely into linear factors, as elways happens when k is
an slgebraically closed field such as €, there is & slight variation of
the rational cononical form which gives o sirnpler matriz for T, the
so-called Jordan cancnicael feren. Retionab canonical farrm s sirnplest
when the sperator is nilpotent, 1e. when torme power of 1t 18 Zerag,
since then the cecefficients of the minimal pelynomial appeering
nlemg the right side are all 2zerc. To exploit this for sther cperators,
we irst decompose the space eccording to the distinct prime factars
af u, and in esch fector spece corresponaing to & factor {X-2)F af p,
cheose the rational canonical basis correspending to the nilpotent
aperator (T-2), rother than T. Since we must add %'z glong the
diagcnal to pass from the matrix of T-a to the matrix of T, the
urion of these bases gives & hasiz for the whole space such that the
corresponding matrix for T is compesed of blocks of form:

-

A 0 0 . 0

1 A0 o

¢ 1 + . 0 wsonthe diaganel, 1's below it, U's elsewhere.
00 .1 A

To calculate the murmber of blocks for each a, and the size of each
block, we have twe options, either find and then diagenalize, &
"presentetion rmatrix' [p] for the ki¥l redule (M, T}, or else carry out
the kind of dimensian calcutations used in the proof of unigqueness of
a eyelic deccmpesition. We will show how to do such calculations in
the next section. In this section we will describe the Jordan form
and prove it existe. It is treditional to use & instead of X far the
varieble, to speak of (M, T} as & klal-rnodule, and the minimal
polynernial w{x) &s a polynemisl in ». In general however, it seems
cesier to keep the variables separste from the constants if we use X
for the variahle in the polvnarmial wiX), and % or »j for the roots

let TIWMI—M ke an endomarphism of a finite dimensienal k-vector
space, with rninimal polynomial w = Mic1 g (H=2i)7i, ie. assume all



roots of 4 esre in the field k. Thus the prime factors of p have forim
pi = {¥-ng), for i = 1,8 Qur first stepas a preliminary
decarmposition of M into the "tersion” subspaces determined by
powers af each prime factor. This is the aneleg of the decornpositian
of & finite akelian group inta a product of jts Swlow subgroups, but
here it is called the "primary decomponition’ of (W T). This step does
mot need the hypothests that ui¥) facters into Lingar factors over k,
nrd can be dane with any finite dimensianal pair {11, T

Primary decomposition Lermnma! Given = (finite dirfmensional] pair
{11, T), bet pix) = TTpifj be the Factorization of the minmmsal
polynarmal of T into powers of distinet wrreducible factors ower k.
Defing the "prirmary” subspaces of M as follows: for each i, et IV
2w M (pd THTL (wr)=0} = {all veclors kilied by the ith factor
{pstTNITi gf p, . Then MicM iz a T-inveriant subspace, and M =

T M, isermorphic as k-vetlor spaces (and a= k[X] - medules).

procf; The fact that ench Mj iz T-inverient fallows from the fact
that T carnmutes with any polynornial in T such as sach RilTl.

l e if « 1z n Mj then {pil THri{=)=0; then (Rl THTH T = TRl TV
= TiQY = 0O, sa Tv is in M too.

The decomposition follews from a peneralization of the argument for
the Chinese remainder thecrem as follows: since each WMCIW is &
subspace, we can map the praduct 175 M — 1 by addition, ie if a
= {g1,..,ag), defineg la) = Za;. Since Lhe M; ere T-invariant and
T(Za;) = ET{a;}, this iz & k[Tl rnodule map. To see b injeclive, assuIme
Jyim) = Taj = 0, s0 81 = -aZ-_~fg lies in Mz+ .+Ms. Then ai i
snmihilated by both piTi, and by pa-.. ~|:|5]'t for sorme t 3 0, (since
the right side 18}, Howewver, since pi¥l and {pz-__..rps}t hawve 1o
cornmmon prime facters, their ged iz 1. end wWe can write

1 =gp1tl she{pg-..psit. Then 1 annihilates a1, so a1 = 0. & similar
argurnent shows all a; = 0, hence § iz injective

T show § surjective, let p = TTi=1 = o3l agamn be the factorization
of the mimrme! polynemisl, and note that the various products g1 =
(pzf2-..-psTsl, g2 = (piFi-p3'3-. -psts), oo g ° (pqTiv..pa-173-1),

heve no comrmon prime factors, where qj i3 formed by amitting the

power i from the rminimal polynamial. Hence together they



pernerate the unit deal, and we cap write 1 = higl+..+hsqs, for
sorne polynormials hy. Then [ar each elerment b in ¥, we have b =
1-k = Ihagib = Ibj, where bi = hymb. 1f we note piT 1k = himiX =
£, we see thet b belongs to M. This proves surjectivity of §. OED,

After decomposing i eccording to the primary decomposition M =5
Tij={ s i, we can then decompose each of the klX] modules MM by
the standard decompesition. 1f we write T; for the restriction of T to
IM;, the resulting matrix for T is made up of = blocks, where the ith
block iz the rational cencnical rmatrik of T{. Thus each [Til iz itself
compesed of blacks, in which enrh block is the cernpanion matrix of
some power of By

The twao decompesitions, primary and standerd, can elso he done in
the gther order. 1f we heve slrcady done the standard
decomposition of (M, T), M = [Te k[X)/{fa), we can get the primeary
decomposition in two more steps: first, take the primeary
decomposition of each cyclic factor; then for ench prime factor p of
the rninimel polynernial u of T, the prprimary sukspace My of W
falready i itts stendard decormnposition}, is the product of the p-
primary subspeces of the various cyclic factors kIX]/(fa) of .

The primary decormnposition af & cyclic factar 1g a corollary of the
lernme above, but is perhaps worth stating 1o a more general form,
whieh iz just as easyy Lo prove:

Sublernrna: 1f B is any ring and {1j) & finite collection of
-eornaximal’ idenls, in the sense that 1j*Ix = R for all jzk, then the
natural map yR="T; (R/i}} induces an isornorphism

RN 31— TTj ([R50

proof; Ta show the netural mep ¢ R— Ty (R/1j) iz sur jective, it
suffices to show the imnage contains the standard generators

{0 .0 l110...,0) For each jwe raust produce an clement » in R zuch
that x=1 mod 15, end % iz 1 Ik for ell kzj. Given j, for each k=
choose %k in |y and vk in lJ' s0 that xk+vy = 1. Then set % 5 TTk xk =
Tfkrj (l-yk] = 1+ y, where v is in lj. Thus wlx) = (0, 0111007,
and ¢ 15 surjective. Since glz) = Diff 2 s In every lj, kerigl) = My Ij.
Thus by the first isormarphism thecrerm, Aty = T (RA Y QED.



Corollary: If R is & pid, p 2 non anit, p = TT; pifi, for non esscciate
primes pi, then RAp) = 1T RApiTil.

proof: The ideals (p¥) and (g%} are comeximal when p.g, are non
pisociate primes in R, Ie. since ged(p? o) = 1, they generate the
ideal £T,g%) = {1) = R, Mate also, if w = TIRi¥l, then My (pifi) = (W),
Thus RAp] = RANG (pifin = TT RApiTL. QED,

Example of primaery decomposition

By wayv of illustration, if we use the sarne exarmple as in the
previous section where the stendard decomposition of (M.T) was
(RIXICK-20) = (RIXIACH-200%=3)02) = K[X]/({X-2)2(X-3)2), the
invariant factors are f1 = X-2, fz = (X-2)(¥-3)2, f3 = (X-2)E(X-3)2,
and the prime factorz are, p = X-2, and g = X-3. Then each of the
three cyclic factors can be decormposed 1nto 1bs primeary cormponents
as fellows:

The first cyelic factor (kIXI/{X-21) iz alrendy (X-2)-primary, ie. its
annihilator is a power of the primme X-2 The second cyclic factor
decamposes Aas {k[}{lft{}{-.?}t}{—S}E} = (K[X]/AIX-2)) = {HH”{H"E]E}, and
the third cyclic fector decornposes as kiX]/{{X-2)2(X-3)2) =
(K[XIAHX-232) » (K[K)/(X-332). Then the (X-2}-primary subspace of M
is the product of thoze far esch af the three factors, 1e. M{¥-2) =

(RIMIAR-21) = (RIXIAR-2) » (k[¥])/A(X-2)8),

The (¥-3)-primery component of I is likewise the product of those
of each cyclic factor. Of course only twe of the cyclic factors have
them, 5o we get Miw-3) = (k[X)F(X-3)¢) = (kX ({X-F)Z), Then M &
IvIg-21 = IWI{X-3), and we already have the standard decornposition
af each of those submeodules. The metrix of T for thir decompesition
iz then cormpesed af five Blocks, namely the cormpenion matrices for
the polvnomials, (¥-2), (X-2). (¥-214, (¥-512 and {¥-312. This looks
a3 fellows:



n -9 = [TI.

0 -9
1 &

The first three blocks along the disgonel correspond ta the rmatrix of
T oo the subspece M{x-2), and the next twa blocks give the matrix
of T an the subspace M{¥-3). Thereis really no hig sdvantage to this
metrix over the other versien of the reticnel cenonical form, but if
we rneke & slight change in our paint of view, then we get
zornething very nice, as we disguss next.

Jardan cananical foerm
Suppose we look sgain at the map T on Lthe subspace M{x-2). On

this space the map {T-2) has an even sirnpler minimal polynomisal
than does T, nernely the minimal pelynerrual of (T-2) iz just Ke.
Mare generally, whereas T has invariant fmctors (¥%-2), (¥-2), (X-2)¢
on this subspace, (T-2) hes the even simpler invariant factors ¥, X,

¥2 1e. these pelyncmiels have only 2eraes as non teading
cosfficiemts] Hence the compenion matrices are as follows:

g 0
9] = [Cw], (9 = 0%, L UJ = [Cx2], and we hawve the following

retionsl canorucal malnx for (T-27, on M(X-2).
‘ ]
ol [T-2], on M{X-2Z).
1 0

Mowr sines T = 21 + {T-2), and since in any basis 21 has a disgonsl
metriz with 2't on the diagonal, the raticnal cenonical basiz for
(T-23 [en Mix-zil, gives this metrix for T;
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2
0 = [T], on Mi¥-2), where the hianks are zeroes.

LB}

2

-

Simnilarly, on Mix-3), (T-3) has minimal polvnomial ¥e, and
shvariant fuctors X€, X<, so we get the following matrix for
{T-3), on Miy-3:

0 0 r
fo |
0 0

o

Hence, as metriz for T on M{¥-3} we get!

= |T-3], an M{¥-3).

-

J = [T], an DV{32-33.

—_ 1y
L=

30
1 3

Cormndining these gives the full Jordan rmetrix for T.

[2

]

30 = [T], on all of M.

-

This last matrix is the Jordan canconica] forem for T, and it s unigue,
except for the possible reordering of the roots 2.3 of the rrunimal
polynomial. (Recall thet € s not an ordered field, so there iz no
natural wey to order these roats, at least when they inelude non
real comples nurmbers, slthough & neon natural erder rmay be agreed



upon) Thus, while the rational cencnical forrn of IT] 15 given by
choosing the following k-bazes tor the five cyclic primery subspaces:
111, {11, 1.3, 41,50, (1 KL, the Jorden reronicel forr arises from
choosing instesd the follewing k-kases for those same subspaces; {1},

(1}, {1, (¥-23h, {1, (2-30), (1, (X-30h

Inn genersl, after decompasing (M,T) according to prirmary subspeces,
end assuming the munimal pelynomial fectors cornpletely over k

inte linear factors p = Tliz1_ = (X-xii%, ond suppering that on the
subspace M{¥=-3), T has invariant factors (H-adTl, (X-23T2, . (H-akn,
where rif..:Fn, then in esch of the corresponding cyclic subspaces
K[¥]FM-2)T, we chopse as hasis {1,0%-3)....,(X-2)7"11. This will give us
e rastrix [Jyl for [T on M{X-3) composed of o Dlock:, one block far
esch r{. Each block hes x along the diagonal and 1's below the

dingonal, and the black corresponding ta (¥-2)T iz an raT metrix.

Te recap, an "glementary Jordan bleck” is & square matrix of the
following form, rxr for zome T, with some root 3 of w along the
disgonel, ones just below the diagonal, zerces glsewhere:

L

1A

L |
Then, if the (¥-3) subspace of (M, T] has n cyclic components, My =
Tiz1 pn k[®]AK-2I71, the metrix 14.] of T on My will contain exactly

m such clermentary Jordan x-blocks:

EJ’:--‘-] = 1_-..1::.‘].




Finalty if p = Tli=1_ s (-1t the full matrix for T will be made up
of = such block matrices Jy,, one for each root A of the minimal

polynormial piX) for T.

1] ;

[‘F*.-] z [Tl, onn al! of IVL.

[2:]]

It follaws fror the theory of standard decomposition that the
Jordan cancrical farm of T exists and is unigue, up to ardering of
the roots » of u{X), assuming anly the minimal polynomiel 4 splits
aver k. We can derive a few usefu! corollaries about diagonalizable
endomerphisms from the Jerden form &8s follows.

Definition: An endamorphism is "disgensalizgable’ iff in some baszis, it
hes 8 metrix ail of whose off-diagonal entries are zera.

Sjote thet a dinganal matrix is in Jordsn form, so ehn endomaorphism
is dimgonriizakle iff it has e Jordan form and that form is diagonal
fie. "all 2’ end no 1's7).

Corollary: T is dimgunalizable iff all the sterndard invariant feactors
of M. T) are square free, iff the minimal polynormial BT is square
free. In garticular, if M has dimension = 4 over k, and if 14 has d
distinct roots, ai.. ad, then g = Tli=1..2 (X=xi), and T s
dirgonializable.

proof; Exercise in the definition of the Jordan form. QED,

Fxercise #142) (i) Write down all possible o=3 Jordan matrices
hawving minirmal pelynemisl (X-5)2.

{ii) write down eli possible 5x5 Jordan matrices having minimal
polynernial (3= 13(K-33(36).

{iii} Write dawn all pessible 6x6 Jerdan maetrices hewving rminimal
polynomial {X4-1)2(X-2)2,

(iv) write dawn the Jordan form of T if the aair (W, T] has
mvariant factors (X-1MX-2), (H-133(%-2), (H-1)3(M-2)2(H-533



§8) The canonical presentation of (M,T).

we want te show haw to celenlate the Jordan cancnicel form of an
endernorphisrn TV — M, of & finite dirrensioral vector space M,
starting from any metriz for T. We olready kriow how to do it
starting from the inveriant factors of the pair (M. T}, soc one way to
proceed iz Lo find 8 “presentation matrix” for (M, T), i.e. & matrix for
the mep representing M as & guotient of two free k[X] modules.
Then we can diggohialize that metric by row and column aperations
to find the invariant fecters, and thus the Jardan form., M course,
as a practical metter, we also heve to be shie to split the invariant
factors into lineatr fectors over k, which can be chellenging.

Definition: Let (M.T) be given, where M is a finite dimensionel k
vector spaee, and T:M—M an endomaorphism. If F1,F2 are finite
rank. free kKIX) modules, snd ¢ F1—Fz2 iz a k=] rmodule map, such
that for some kIX] rnep F2— M the sequence F1—=Fz - M—0 is exact
as k|¥] modules, then & matrix for ¢ is colled s "presentation
roatrix” for (W, T).

Terrninolagy: For any map ¢:A—D. the quatient B/Imiy) iz called
the cokernel of p”, or cokeriy).

Femark: [Note that gFy—Fz—M is & presentation for M, iff Fg—M
induces F2/lmip) = M Thus & presentation of M iz an isomorphism
of M with & gokernel of a map of free meodules.

Given any matrnk for T, there iz always & cenanical associated
presenteation motrix for (WLT) as follows:

Theorem: EBet M = kI by some choice of k-besis for M, and let A =
1&1__:]! be the associated matrix for T. Since elements of k are also
elernents of k[X]. the metrix A in Maty,xmik) also belongs to

Matin stk Then the rmetrix |%-1-4] i Matmurnfk[XD iz &
presentation matriz for (M.T).

Prasf: Let the standerd k[X)-basis for {kIX]17 be denated ul, .., um.
Thus uy = {1,0,...00, ug = {0.1.0,...0), .. etc. We denote the standard
k-hasiz for kT by e1,...em. Then el = {1,0,..0), ez = (0,1,0,..0), ..
ete. These bazes {uj} and lej} thus look the same but we distinguizh
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thern since they belong to different spaces and play different roles
for us DMote the inclusiam kMc (kXM identifies &f with wj,

Of ccurse 1T is also & k(¥ module, where for v in kM, Hew = Ay,
Then {ejt is & %IX] generating set, but not & kl%]-besis, for kM. Thus
the map @ {kiXF— kTN taking uj-*ej is & kI¥] surjection. Nate that
ai¥-uj) = Xerluj) = Heej = Aey = jth colurnn of A = {alj,
nzj..emjl- 1= By, Fm? = =i fiwi, then aif) = Ij filAdei.

Defime the kIXl-map gk XD = (k[X]¥F by the matrix [p] = [M-1-A]
Then pluj} = jth column of [4) 2(-81j,-82j . %" 8jj — Amj"

Hewj - 2y aijui

Now spply o to this last expression, alpfujl) = gldluj - Zi ajjui) =
K-ej- Lyayj e v Aej - (L4 ajj ei) = Aej -Aej =0. Hence Irnlp)Skeria).

The following misertion implies the theorem:
Claim: The sequence 0= (Rl XM = (k[ K]} —= kT — ) defined by the

maps ¢ and ¢ 1% eXact
proof: We have already shown @ is surjective arnd gop = 0. Since

LI has rank zera as kXl module, by odditivity of rank, Irmiy) has
rank m, ker{g) has rank =ero, 50 ker{p)={0} and ¢ is injective,

Hence it suffices to show lrmiy) © ker{g). Assume fis in kerla), 16
off} = T, filAdei = O, in kM. We must show f1is1n Trmfip).

Lemnma: (i) Z; f;lAd; = 0 atso in{k[XIPH.

{ii) Far anv polynomial n{X), h{X)-I = (XD

{iii) For eny pelvnomisl b, hiX-T-h{A) = {¥-1-A}-g, for some g in
Mﬂtmxm{k“’{”

proof of lemma: (i) By hypothesis, 0 = alfy= £ filAdle in kT, and
the inclusion EMa (kXM identifies the vectar I filA)e] with the
vector ki filAJuj, QED.

(i} Whenever R is a ring, a,b are in R, and 5, T are R-
homemorphisms we always have (aS)BT) = {ab}S5T), so in particular
in our case where R = k[X], we have (K-1){X-1) = WE.] (e = ¥N.IH
- ¥n.l. ... sctasking k-linesr combinations of these gives h(X)-1 =

hi¥-1), for anv h. QED.
{iii} Although Matra=xmiklX]) is not a cormmmutative ring, X1 is1n

the center of this ring. Hence for all n, we have the uzual
factorization (3-)M-AR = (X I-AXXD=1.1+ X204+ +ART1}
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Sirce REY-11-hiA) is & k-linear comkirnation of differences such as
{3 1)- a0 it follows that (H-I-A) is a facter of each term and hence

F

cf the differcnce hid-[}-hial. QED. Lemma

We can now show that £ it in Imie). e then f= I fi(H)wy =
Ti b XY Iou; = i 50M-D0ag - Z4 filAr-ui = Ej (G041 - fitA)bug =
Ti (%-I- Adgi-uj = (M-1- AME; giruid = «{Zi gi-wil, s in Imlp].
QED for Clmitnn and Theorem.

Terminolopy: We call [¥-1-A] the charactenistic matris for A

Exemples: We now give exampies of applying this thecrem te find
the Jorden canonical form of a rmeatrix, Suppose the matrix whose
Jorden forrn 1z wanted is the fallowing:

r

| 2 i i X-2 D n v
A= 4 6 1 Then¥I-A=! 4 X-6 -1 | Interchanging
Llf. 16 -:J | 18 18 X+2

rows ond columns to bring the smollest 20 entry to upper left gives:

P -1 X-6 =
¥ O X-2j5. Adding {%+2) + (top row] to the bottorn row,
X+1 lé &

-

gives the fellowing matrix:

-1 X -0 -1l -|
th x-2 ! Clemring out the top row, and then
noo[x- 2y -#x-23]

exchunging the resulting two right hand celurmns gives:

i (b U
0 xX-1 & Adding 4 times middle row to bottarm Fow:
0 —4[(X-2) (X-27°
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10 0
0 x-2 0 |, which is in standard disgonal form.

e o (x-20

Thus the inveariant fectors aere {¥=-2), (¥-2)2. There is only ane
irreducible factar, X-2, which pccurs twice, with exponents 1 and £
Thus there are two elernentary Jorden blocks for the charecteristic
ragt =2, one of size 1x1, and one of size “x2. Thus the Jordan form
iz the following matrix:

- -

= Jordmn Form of &

o S bka

a
p
1

5 B

Let's trv nnother example:

a9 1 201
-2 1 6 3 L .
E = ;2 .10 1l Then the cheracteristic matris 1s!
12 -3 -1 3y
|_ X -1 1 -1
(2 X-1 & -3 L .
X4-B = 2 3 ¥ Ll Bringing &s srmall as noszible an

2 3 2 X¥-3]

entry to the upper left position gives the follawing meatrix:

1z - :{'|

306 X-1 2 : ,

L ox o3 2| Using entry (1,1} to clear the first colarmr
la-x 2 3 =2
2 -1 X

ll.'J o X+3 2-3X

-‘_ Clear 1st row, then bring 4 to (£,2),
\fﬂ X-7 4 -1-X

0 2X¥-4 6-X X' -3X-12



13

and concentrate on lower right 3x3 submatrix:

x-2 -X-2
|
X+ i} 13N C Cicar 1st colurnn, then 1st rows
b-X%X 2X-4 r*—3x—2J

SR 0

0 4-x%° ¥ —8x+12| MNow concentrete on the lower right 2x2
L] X'-4 3¥T-8X+4

submatrix, ond reduce degree of new enfry (1,1} by edding Znd
calurnn te lat

Mow entry (1,1}

_§X 16 XT-BX+120 T H2-X) (X -2HX -6
AXT-SX 3K -RX+a) | [4XiX-2) 3A'-8XK+4 ]

it the ped of the kst row and lst column, sc clear them both:

R(2- X} XT-BX+12 rx -2 F _
= 2 . T L d d

0 x’—zx’—s»x‘E] [ 0 (x-zrixen) 0T endsrd diagenel
T 0 0 0

_ g1 0 0

form 1z thus Meow we knew the bwa
Do X-2 0
b0 0 0 (X -2FX D)

_

inveriant factors to be {X-2), {w-212( K2, Then we hawve bwa
cheracterjstic roats, & = -2, 2 There is only one inveriant factor
divisible by a pawer of (¥+2), with exponent 1, hence anly one
Jorden block corresponding to a=-2, of nize 1«1,

Thers are twe invariant factors cantaining powers of (¥=2), with
exponents 1 and 2, nence there are Lwo Jardan hlocks for a=2, of
cizes 1x1 and Zx2 e have this Jorden metri:

-2 4 9 0
o 2 9
= Jordan farm for B.
n o 2
O o 1 2
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Mow let's try a still larger one-

s -l -3 2 -%
002 00 0|
o= 11 0 1 | -2| The characteristic matrix is
o -1 0 3 1
[I TS I
(x-5 1 3 -2 E

WI-Co= | -] 9 X-1 -1 . Exchenpge 1st, Sth rows,
]
]

[ -1 X-1

and clear 1zt colurmn, then lst row:

il 4 0 0 4

0 x-2 0 { 0

¢ -1 X¥=2 0 i-X . Focus on lower right 4x4 and
0 ] 0 A-3 -1

) X-4 X-2 3I-X X -6X+10,

cxcnenge new rows 1 and 3

C D X-3 -1 ]
-1 Xx-2 0 i- X

X-2 o 0 U

| X-a4 X-2 3-X X'-3X+6

 Clear 1st coelumn, thern 18t row:

L U 4
DX -2 x-1 2-X
b0 -X¥+3X-6 X-2
0 X-2 -X't6X-9 X' -5X+6]

. ln lower right 3= 3, subtract

neswr 2nd column from st
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C ] X-3 1-X ]
¥I_dX 46 -XT45X-0 ¥-2 . Subtract 3rd row from Znd,
XT-5K-7 -X+6X¥-9 x’-smﬁJ

then clear 1st cotumn, lst row, then look at lower right Z2=2:

-

_wl sy
[ 0 AT +3X-6 J Swritehn columps and sdd

X A INE 1N 412 XT-EXT+3X-12

w.(1lst row) ta Znd raw, then negete first row:

X _5X -0 0
AN 417X 72 X TE -16XK+02

]_ Add 3- {1zt row) ta 2nd row,

then btactor first row:

X - 20X -3 1
’V{ : I ) _— 1(} C oAdd (T-¥i{second rowl to
X -7 X 4 K- 16X 412 ]

2l first raw), and then switch rows:

120X - X TR - X s
20X -2 ) X 1-'-1": ' X411  Clemr out first row, and factor:
i K= 10X+ ATHT - 60X + 36 |
"X -7 T
| o

. -| Mow we have the diagonei rmatrix:
{X - 27 {X - 3r

-
1k

1 [ This gives the invaniant
{A-2)
(X - 2F(X —3F

factors i (-2, (3-232(%- 332}, Thus there are two characteristic
rects, 3 = 2.3 Two powers of {¥-2) cccur with exponents 1 and 2,
e thiere are two Jardan blocks far a=2Z, of sizes 1x1 and &x2. The
anly power of (¥-3) that ncours has exponent 2 sa there iz ohe
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Jordan block for a=3, and it has size 2x2. Thus the Jeordan metrix is
the followikg:

2
|
0
1]

[ -

L. TR - Y O I . Y o

0
0
n
3
]

= Jorden matrix for C.

[ I = T e R v R

-

In the next section we introduce the characteristic polynomial of an
endermorphism T, deseribe it using deterrninants, and shaw how to
cmlculate n basiz which puts [T] in Jordan forrm.

Exercizse #143) Find the Jordan form:s of these meatrices:

{1} & =

G
1
pl

- S L I S A ¢
I ¥ u'|
-1 — - ) =3 2 1
-4 6| fuy B = 9 1'.(iii}C= -2 -1 0 1 14
-2 3 o -3 -1 -3 4 1
- - -1 -7 5 4




B45 course notes part Zb
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510) Cherecteristic polynomials, eigenvectors, and Jordan
bases

In dealing with finite abeliar groups, Cauchy's theorem told us that
the order (ie. cardinsality) of a group is o rnultiple of the annihilator
of the group. Thit wazx uzeful information since the crder of & group
15 often more sestly calculated than the ennihilater. In the present
setting of a k[X] medule (M, T) the minirnal polynormial af T is the
aralog of the annihilator of the group. There is also an enalog for
(v, T) of the order of the group, namely the characteristic
pelynomial %, & pelynomial which may be more readily celculated
than the minime! palyncmiel w, and which turns cut to be a
multipie of p. W also contains other useful informetion elbout T, such
as dirmglb), det{T). and trece(T). and the dimensions of all the

privnary components of M

Definition: Siven & =quare matrix A, define the "characteristic
nolvnormuel” of A to he ¥4 = det{(M-1-A)

Rernarks: {f A iz en mxm metrix, %2 I8 8 monic pelynomial of
degree . Jimilar matrices heve the sarme cheracteristic

polvnormial.
proof: [second staternent only]: For any two merm matrices C.D,

det{CD) = det(Didet(D), apd C71{x-13C = X-1. Thus if B = CT 1Al then
(%-T-B) = (¥ I-c71aC) = ¢ LI10 - ¢ LlAC = o121 - A)C Thus B
e odet{3-1-8) = det{l)det{¥-1-B} = det{C~1C)der(}.[-B) =
det{C-Ddet{Cidet{X-1-B) = det(C Lidet({¥.I-B)det({C) =
dettC 1M I-B)2) = det(¥d = C"1BC) = detiX-1-A) = w s QED.

Corellary: if TM—=N is an endomorphism of a finite dimensional k-
vectar space, we may define the characteristic polvnomial of T
uniquely by ¥T = 4 where & iz any rmatrix for T.

Coroliary: If {1, . .f; are the invar:ant fectors of TIVI—= M, then T -
T fj; ie. the characteristic polvnernial of T is the product of the
inverijent feactors of T.

proof: If & is any rmatrix for T, then the invarient factors ere the
disgonal entries on the matrix resulting from diegonelizing the



presentation matrix [K-1-4], over the ring ki¥]. Hence there are
invertible k{¥| rnatrices o, such that [¥-[-A] = 1-D-g, where D iz a
diegonal mxm matrix whose disgocnal entries are possibly same 1's
mt the bepinning, and then the invariant Jactors f1,...f5.

[1
|

1

]
. -

Then det(X-I-A) = det{z)det{Didet{1), where det{s) detit) are
fnvertible elements of K[X], i.e. non 2ero elernents of k. Thus on the
left we hove A monic polyrnormial of degree m, and on the right we
heve a constant multiple of & monic degree m pelyneomial. Hence
the constant multiple is 1, and % T = det([X-I-A]) = det{D) = TTifj, as
cleimed. QED.

Corollary(Cayley - Harmilton): T satisfies its cheracteristic
polyncroual, ie. ¥ T4T) = 0.

prootf: We know wi{T) = 0, where the minimeal polynomial n 15 the
invarient factor of T of highest degree. Sinece |y, wiT) = 0. QED.

Rernark: Since the characteristic polynocmial mey be more easily
computable than the minimal polyncrral, it is useful 1o have a
disgonealizebihty crteron in terms of it. We do not heve a
necessary criterion but we da have a sufficient one:

Corollary: Given T =M, where dimg(M) = m, if AT has m distinct
rogts in %k, then the Jerdan form it diagoneal; 1n particuler, T 15

diagonalizahble.
proof: In the m=rm Jordan ferrm there are m distinct blocks each for

r different roct a, hence emch block i5 121, and the meatrix 13
diagonal. QED.

Exercise #144) (1) If A 15 s 3=3 matrix with cheracteristic
palynomial % = {¥-4)3, pive =l pessible Jorden forms for A, each



with itz rminirmal pelynormial.

(i) If 3 = 1Ty (¥-2)70% 15 the cherecteristic polynornial of TM—M,
prove gvery root of 3 is also a root of the rninimel palynermial u,
and if My = {v i M: for sgme r » 0, (T-21¥{v) = 0) is the primary
subspace of M corresponding to the root i, that dimi{My} = my,
{111} Use determinants to compute 73, for these motricss:

51 0 ] -] 4 R

o -l 1 I o -3 c}i
A = B=lo 2 1|lec=|3 2 a1l D=

|0 o 1 2 - B -2 1w

L= J 1 2 1 2

EFxercizse # [45) If AB are mxm matrices, over K = E, define
vrace(s) = tr{A) = Ef nji;

(i) Frove det{a) = [-1)T (0} = (-1} -{constant term of ).

(i1} FProwe tri{AB) = telBA), deduce trace(B"1ABY = trace (A).

(iii} Prove: tria) = £ {roots of %} = -{ecesff. of X™71 in w3},

(iv) 1f My = (vin k™. (A-2v = B for seme r > Q), prove dim(My] =
d, iff (M-209 | v, but (-840 7y

n

Remark: Sinee the charecleristic polynemial of an endomorphism T
iz an invariant of T, so are sll itz coefficients, which must equal the
elermmentary syrnmetric functions of the cheracteristic roots. The
previous cxercise shows that the troce and determinant of an
endarmarphisrm T are {up to signd the first and last of these
coeffictents.  we cauld call all the coefficients af “characteristic
invearients” of T, but the ethers don't scem to get used rruch.

Next we ditcuss how to find, not just the Jordan matrix for a given
&, but the Jorden basis correspending to this metrizx. Egquivalently
we show how to find an invertible matrix 2 such that Q7 1ag = I,
the Jordan metrix of A, We will foacuz on finding bases for the
subspaces of form ker{A-}7 where a 15 a root of the characteristic
polvparmnial of 4. The first of these s particalerly impertant and has
a special name, the "a-eigenspace of A"

Definition: An "eigenvalue’ of A is an element » of the field k such
that A-3 hes & non triviel kernel, If a s an cigenvelue, ker{A-x) is



the corresponding cigenspace. An "eigenvector” of A 12 8 non zerp
vector w such that (&-a)w = 0, for seme % tn k. The sigenvectors of

A for » are the non zero elements of kerf A=),

Rernark: The elerment 4 i3 en eigenvelue of A 1ff & 12 & root of ¥4,

ie. iff 2 is a characteristic root of A,

proof: If (A-3)v = 0, where v = 0, then the matrix A-i iz not
invertible, hernce detlA-2) = 0. le xis a root of det{a-X) = .
Convarsely, if & is & root af 3, then det{A-a) = 0, 20 (A-2) is not
invertible, hence &-a cannot be injective, so ker(&-a) = {0). QED.

3 -4
o -4 1

find m “Jorden” basis of k€ corresponding ta this metrix?

Now suppose A = [ ] has Jorden matrix [ 2] = J. How do we

0 0
Mote that J-2 has matri}:[] D]' and thus (J-2lm1 = ez,

(J-Z¥zz = 0. This says e2 iz an eigenvecter for J, with eigenvalue Z.
So the basis in which the endormorphism A has matrix -J, iz of form
vi,w2, where (A-2Jvy = vz, [A-Zlvz - 0. Jince one thing we know
how to do with sny maotrix C is solve homogeneous equations of type

Cv = 0, we could begin the search for this basis by finding a vector
v7? zueh that (A-2)vp = 0. Then how to find v1? ‘“Well since (A-2)vry

= 2 amand (A-2)v7 = 0, we see fAh=232v1 = 0. Thus we could try to
find w1 by solving (&-2)2vj = 0. Mote however that vq thould net
alsa be 8 selution of (A-Z)vy = 0. Since there are two independent
solutione of (A-2)2y = 0, but only one independent solution of
(4-2%s = O, zurh & v] does exist. So here is what we do: first find
w2 that solve: (A-Zhw = 0. Then w2 solves {A-232w = U, but does
ot span the full solution space of (A-212 = 0. Let w1 be nny second
solution of {A-2)€ = D which iz independent of wz. Thus both of
Py, w2zl solve (A-2)¢w = O, and only one of thermn, narnely w2, solves
{A-2)w = 0. This is not quite the set {v1,v2} we want, since we alse
wont to have {(A-2)v] = vz, So put w1 = wi, but replace wz by w7
t {A-2hr1. Then tvi.vzl is the basiz we want.

So we have to begin this process by finding en eigenvector w2 in
kerf A-2} which is nat the one we ultirnately want, wWe just use wgz



vo help us find w1, in kerfa-2)2 - ker{A-2), which i+ & besis vector
we want. Le after finding w1, we take w1 = w1, and then go back
and choose a new vz = (A-Z2)v1. Then {vi.vz} it our Jordan baszjs,

let's actually do the calculation for the matrix A skove. Since A-2

= I-ﬁ - first we solve [ﬁ -"'1-:||ix_' = r:l-| for w2z = [2] Since {F‘rE}E
13 —a] "7 9 -6 }'J 0¥ 3|

= [, we jJust pick any wvector independent of w2 to ke wi, such as

£1
Wi % |_'; . Then we lake w1 = wq = [:}]J end vz = (A-2)wy = [;]

Thern the baziz {v1,vz] = ((1,0), (5 .2)] iz & Jardsn basiz for A. le.
since A1 0} = (B.9) = 2-01,0)+1-(6,9}), the first column of the matrix

of A in the besis i5 [I . and since A{6,9) = (12, 18) = 0-(1,0} » 2.(6.,9),

0 [
the second colurmn is [E] If we now defineQ = [ﬂ g], then Q1 =

9 g 2 D
a1 and you can chegk that o lag = J= [1 2].

-

l'.lf'-]]'[

wWhen we work with matrices for which we do not know the answer
i agvance, and especially for large matrices, we will find the
nurmbering of vectors in the basis gets completely mixed up. We
huve mlrerndy zeen in the previous example that w2 was the first
vector found, because w2z was a solution of the first equntion we
wrote down, (A-2bw = 0. le w2 was an eigenvector. Thiz notetional
praklermn only gets worse with rmore commphcated matrices. One
attempt at a numbering svstern seems to be to reverse what we
have juzt done, and ey te number the basis vectors beckwards, ie.
50 theat the eigenvectars come first. But gven this does not work
perfecthy, since the vectors found first, ie the cigenvectors,
correspond to the pight rmast columns of cach individual Jordan
hicck, sa they should be ultirnataly scatiered throughout the hasis.
Mereaver, numbering this way reverses the erder of the columns in
the Jardan rnotrix, changing our "ewer" jordan form inte an
"upper" jerden form, but that is really no problem. To illustrate,
let’s try & 323 exemple, numbering "backwards” this time.

Let's redo the foliowing 33 example from the previcus section.



|' p Q ﬂ'l 2 00
Az 4 ) L . *e know the Jordan formis J = |0 2 @
[—Iﬁ -16 -2 a1 2

[Here we mavy think of A a7 an endoarnorphisrm of WV = Q39| The
elpenivectors of J are g1 and e3, 5o in the first step of the precedure,
when we solve {(A-2)w = 0, we will come up with wversions of the
first mnd third besis vectors, end as we saw, these will have to be
modified as in the follawing discuszion,

Azsume we know the chararcteristic pulj;nc:mial iz W = (H=213 Thu-s
the 2um of the sizet of the 2 = 2 blocks i5 3. = dirng(VIz} = 3,
where Mz = {v in M for sorner » 0, (A-2)7{w) = Q} =

{vin M. (A-2)3 (%) = 0} is the C-primory compenent of M, (OF course
here Mz = M) First selve (A-2)w = D, getbing two independent
zoluticns a1, Bl (The subscript is supposed ta ke the smallest pawer
of (A4-2) which annihilales these veetars) These are SlEEnVectors.
Since we only found twa snd not three independent eigenvectars,
the minirmal palynomial yw is not {X-2). But 4 it also mat {}{—233,
since then we wWauld heve found anly one independent elgenvector.
Henee p iz (X-2)2, nrnd the Jorden form has one 1x1 block and ane
2x2 black.

iWext solve (A-2)8w = 0, finding one more solution wvecter =i
independent of ey, 1. Maw ey p1,x2) is 8 basis for ker{A-2)2 and
the first two vectors {&1,p1) are & hasiz for ker(A-211  Simnce we
have three independent vectors and dim(M2) = 3, we have e hasis of
Mz. But we need & "cyclic” basis. le. the problern at present is
there iz no relation between «q and o2, 30 We cannot teke them
together a: n Jordan basis for the 2x2 block., As usual the one found
last, here «7, iz & 'keeper', but we must change either «{ or p1.

Jo we set @2 = w2, and define a1 = {A-2)a2. Then &1 is a new
sigenvectar, 0 it rnust replace either =1 or A1, but we don't knaw
which one yet. Order the vectors like this: {a1.«1,p 1,87} This iz &
gererating set fer Mz but not en independent one, since all three
wectors with subscript "1 beleng to the two dimensional space
ker{A-211. Sp we reduce it ta a hasis, starting at the left end,
working from left to right, eliminating any vectors that depend on



the wvecters te thewr left. [As you prchkebly know, there 15 a2 standard
procedure for thiz by row reduction, or "Gauszien civrmination'') This
will eliminate either «1 or p1. end we then relabel the remaining
one as b1. Then we have [a1,b1,az2! where (A-Zlaz = a1.

As & set, this 13 the Jordan besis, but in the wrong order, [f we
recrder b, gs {a],82 b1}, then the Jordan matrix will be in the
“upper Jordan form”, 1e. the 1't will be above the diagonal instead of
belpw That is fine, sand we call this baziz an upper dingonal Jorden
baziz. le. the Jordan form will lock like this:

[2 1 O
02 ﬂi The larger Jordar hlock 13 first instead of last, and
o o 2

the 1’z are ahove rather then below the diogonnal. Thiz iz & perfectly
good Jordan form. If you want to get our “lower Jordan form’”
instead, reverse the order of the baszis wectarz to get (=g, b1, ail.

Let's carry all this out in detail:
Since W s (%-2)3 we are looking for a total of three yectors
corresponding to a = 2 First salve (A=2hw = 0. Opecifically we solve

the following matrix system.

[0 it 0] [« 0
4 4 ] v| = |8, which row-reduges to the systern:

06 -16 4] 2] [0

(4 4 1]« i
o0 C‘l] ¥ = |0|, eguivalent to = 5 -4x=4%, for any x, ¥, Thus
> 0

two independent sclutions are o« = (1,0,-4), p1 = (0,1,-4},
Femernber these are a basis of cigenvectors, ie. a basis of ker{&-23

Mow consider the equation (A-2)8w = 0. Since (4-2)2 = p(4a) = D,

any third vectar which iz independent of the first two will complete
our basis of Mz, There iz a methaod for finding a vector independent
of twa given ones, but oz = (0.0,1) clearly worksz. Do vou see why?
MNaw let a7 = w2 = (0.0,1), and set &1 = {(A-Z)ap = (0,1,-4), Next we



hawve to elirninate either =1 or p1 replecing it by a1, Ta do this,
plage these vecters {a1,¢1,p1} in the ecolumns of & matrix, in thet
order, and row reduce. Then take the ones that correspond to the
resulting "pivot” coluemns. le. if after reducing, the 2nd colurnn is e
pivat calurmn, teke the second vectar nhove, wq. If the third column
15 & mivot, take pi instead Since the first two columns in the

Meirix:

¢ 10

L0 1| are cbkvicusly independent, there is no need ta row
-4 -4 -4

reduce. Hence we let by = e = (1,0,-4). Thus an "upper” Jordan
bosis is {aq.az2.k1} = {€0,1,-4), {0.0,1). {1.0.-4). Lets test it out-

0 g ﬂ-‘ [n’
Ae1 = | 4 & Ll = 12|=2-a1, 50 indeed the first
-16 -16 —zJ 4] -8

colurmn of the jordan matrix is (2,0,0). Then we haus:

-

Fz o oo 0
Aao= 4 6 1 |loi= || = ag - Zm3, 50 the zecond column of J is

[-16 -16 -2]|1] |-

£1.2,0). Continuing,

r2 o o]ft5 [z
Abi= | 4 i 1|0 =, 0|72k, end the 3rd column of J is
-16 -6 -x)|4| |-s

(0,0,2). Thus the {upper) Jordan meatrix ts indeed:

-

2 1 n;
J = {U 2 f,. [Testing t5s wise; | worked this wrong, twica]
0 0 zJ

Finally, it @ = the matrix with the Jordan basiz as columns:



r
|, then Q7140 = J.
e

—_ =

:_—"-1
Algorithrn: It iz somewhat tedious to do so, bBut we can now try to
give & description of this procedure for finding Jordan bases:

(i) Find the characteristic palyvnomial ¥ = Ty (H-raims. Then we
know the space My kaz dirmension fny, ang so we look for & total of
Friy Independent vectors associated ta

{i1) Solve the svstern (A-adw = 0. There will be between ane and my
mdeprndent soluticns. [f there ore sy, ihl:tl':pl:ndent solutions, we
have finished with the » part of the kasiz. 1 e any chaice of my
rolutions {x1, B1, ... . ¥1} = {&1, b1, ..., cilgives the » part of the
Jorden basis. The a part of the matrix iz diagonal with no "1's”
abowve the diagonal.

[ w

(i3i) Tf there is oniy cne independent solution «q of (A-x)w = 0, then

inere iz anly one a block, of size ma =my. The eguation (A-3)Ew = 0
will ther hawve two independent salutions, of which w{ = one, 5o we
find encther independent zolution =2, Continue 1n this way with «7
another independent solution of (A-3)3w = 0, _ete. Eventually we
find a besiz (o, = I, for My but not a ovclic one. We keep only
the Jaszt vecter found and cheange all the rest as follows, [We will
write rm{a) instead of ma | First put ami(a) = =miy). Then zet
Brafai-1 = (A-abamés), and Lhen amini-2 = (A-alemint-1.. .., B2 =
(A-npaT , 8] = (Aa~-»)a2. Then lai,. . .,am(x} is 8 eyelic upper Jordan
Eesis for the » part of the matrix, which 1z a single rmy <y, black,

- -

A i

T -

e
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{iv) If there are betwesn 1 and m3 independent sclutions of

(A-a)w = 0, find & basis for therm {=1,81 ..,e1}. the nurnber of
elerments in this besiz 12 the number of elernentary Jorden blocks
corresponding ta &, Then consider (A-3)2w = 0, which is solved hy
a)] the vectors elresdy found and sel:ss by at losst one more. Enlarge
the independent set {3, f1 ...£1} to & basis {1,p1,..,61, «x2,p2.. .. 62}
af keria-3)& Jf there ere now My Vettors oltogether, stop, since we
now have a basiz for My, If there are not my, wveclors vet, then
consider (A-2)3w = 0. We will be shle to find at leatt sne more
vector solving this eguation, in additien to the ones already found.
Enlarge the previous set to {={ P ...t1, =2,p2,...52, «3,p3.. 813} a
basis of ker{A-2)3. Contimue until there are ms vectors altopether,
Aand we then have a basis of My which we must change into s cyelic
basiz. For zimplicity nssume {:;;1,51]._..,: 1, =2, p7....52, =3 By 81}, is
already a basis of My, ie agsume the minirnel polynomial of A on
B, i3 {%-2)3. [Notice thet st each successive stage, the nurmnmber of
additional vectors found is lesz than or equel to the number found
at the previous stage. le the number of vectors with subscript "2°
Iz o greater than the nurnber with subscript 1", the number with
subscript "3 iz no grester than the number with subscript “2°, .. etg.
(v} Take the last set of vectors found in step (ivw), namely those with
tsubscript 3, {«3,p3...,¥3}, and rename thern (a3 b3 3}, Mow apply
{A-n) to thiz set cbtaining new wvectarz {a2 by 3} These must
replace sorme af the vectors {ec2,p2,...82) hut we don't know wat
which ones.

Jo consider the =et {ecq By .., e1;82.k3  c2, «2,p2,...62} which
Ectiarates ker({A-5)€. and reduce it to an independent set, working
from left te right. The =zt is already independent from the left end
as far as ¢7 [why?], hence vou cannot lese mny vectors until yvou get
into the subset {ez,pz.. .82} After thiz reduction, we have a baziz
{on 1,B1,....e1. a2 ,bz... ,c2, .4z a7, b3, _..c3), of My, where the last part
(the part named by Romsen Jetters) iz cyvclic, but not ths rest.

{vi) Now apply {A=2) te the set {az,bz .cz. ...d2] chtaining the set
{a1.b1..,¢1. ..,d1} These will replace some of the vectors

{1,811, .21} To =ee which ocnes, form the set

{a1,b1...c1. ..di.«1.B1 ..€1), and again eliminate dependent vectors,
working frem left to right. This leaves & basis for ker(A-3) of form
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lat,by...21. .1l

{vi) Now the set {a1 by ..elez2.bp .cg. .d2 a3 b3, 3], is & cyclic
bezis for M., but 1s not yet in the right arder  Reorder it ss follows:
{a1,a7,a3:b1, b2, b3 oeoq,e2 o9 0d,d2 .10 e first list ail the
blocks of rraxirmal length (here they are of length three}, then sll
the second lengest blocks {here of length twao), . finelly all the
hincks of length one. This puts the (h-pertion of the) bazis in epper
Jorden farrm. 1f yeou prefer lower Jorden form, reverse the order of
thie portion of the basis

(i) Repeat the whole procedure for the next characteristic root, ie.
the next value of 4. Finally place all the different 1 - onses together,
one after another. That gives the full Jordan besiz. If O is the
rmatiriy wWith this Jorden tesis as its colurmns, then Q-lag = Jis the

Jorden form of A,
{wiiil If the largest elementary blocks are larger than size three,

just extend the procedure described in parts {jv}-(uil,

Let's work out another example from the previsu: zection,

o 1 -2 |1
-2 1 -6 Z
= = —215{ K.
B 2 5 g gk where = (B-2130K+2)
N R N

Consider (B-2)w = D, ie solve the system:

A e ) W
: |
-2 -1 -6 A}y 0
! SE . Row-reducticn yvields;
S R R I - 1]
f2 -3 -2 1:[el |0
7 -1 2 -1[«]
o N Y ehich ivalent t
= . which it eguivaelent to
o 0 0 oflz| [of 7T 1
LI G| |ul 0

= Jd

v = —dz+u, Zx - yw-Z2+u = 2y, for eny 2.1 Thus 8 b=z af
ker(B=-2) s given by {wy = (-2, -2, 1,00, p1 = (1, 1, D, 1)}, This tells
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us there are two blocks corresponding to a = 2. Hence pneis 1x1
and the other is 2x2, nnd we need only one more bazis vector for

the spece Mz We solve next (B-2)<w = 0, i#. since {(B-2)2 =

[—1 )} -2 J"[—E 1 =2 1‘| [0 0 O 4}1

"2 ool -6 r'_2 - 3 = RELIRL e reducing vields:
R A A A A 0 & 6 &y '
' 3 -z ]Jlﬂ -3 -2 l‘ 0 5 o -8
I'D 1z —1-| .r'! ¢ 07

B oee ! [}.' - Y gquivalent to w = =Zg + u, for any 2,4
o a0 o, 2 0| ’ :
L] a0 []J |_u |0

We rmust enlarge our previous set {«1,81) to & basie for this solution
sct. Looking at the old eguations we need only choosze v,2u ey
before, and x differently. Eg. teke x2 - (0, 1, 0, 1.

Now we have a basis {oy b1,«2} of M2, but not a cyelic sne, So put
nz = «Zz = (0,1,0,1} Then set a1 = (B-Z2lap = (2 2-2 -2), and note
this 1= ancther elernent of ker(B-2). Now rccall we want to find out
which of aur previcus elerments in ker(B-Z) to replace by this cre,
Consider the sequence lap,m1,p1) = {(2.2,-2,-2), (-2,-2.1.0}, {1,1.0,1)},
and reduce frem left o right. Clearly the first two are independent,
setake by = g = (~2,-2,1,0). Thuz e cyclic basis of M7 is-{ai.82.b1}
= {{2,2,-2.-2,(0,1,0,1), (-Z,-2 1.0}

Mew proceed to M.z, which we know iz ene dimensional, so Just find
one non 2ere vector in ker(B+2Z). Thiz means solve the svstermn:

| 2 1 -2 l'| |'x" o 109 a[x r:!
-2 3 -6 3,.¥5 0 ) _ ) 2 -] 0
1 _3 2 z = 0. which is equivalent to: 81 - T = al
20 -3 -1 5] lu EIIJ 0o 9 0|l 0

or = = 0, v = 2= u. Thuzi(0,1,1,1) weorks

[f we put the charecteristic rept » = -2 first, and 3 = 2 next, we
heve the Jordean basis {00,1,1,1), (2,2 -2 -23, (0,1,0,1), (-2.-2,1,00},
and the upper Jordan matrix is the following:
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-2 0 0 0 n 2 o -21

J:‘D ] Again FQ = b ;, then 071BQ = J
9 0 2 4 -2 0 ¥
0 00 2] 1 -2 1 0

Exercize ®146) Find matrices Q which put each of the following
metrices in upper Jordan form owver £-

o 1 1010 T 1
fi} .ﬂ;=[]0’.(ii>5:u21.{iii}c=3 .
- G 1 2 21 -1
(5 -1 -3 2 -%5%
1 <2 -1 Q
Lo 3 C 2 o0 0 0
t’ii}D:‘ (3 E= |1 ¢ 1 1 =21
-1 - |
¢ -1 0 3 7]
1 2?2 7, :
- 1 -1 -1 1 L

The Jordan decomposition of an endamorphism.

An endorneorphism whese cheracteristic pelynornial =plits over k has
n Jordan matrix which is not necessarily diagonal, but the Jordan
rmntrix does have a diagonal sukmetrix. e e Jordan matrix is
composed of tweo parts, the diegenal part and the off-diagonel part,
the "a's” and the "1's" This decormposition of the Jorden metrix is
actuelly intrinsic to the endomeorphism. le for eny endomorphism
T such thet % T splits, there 1z a unigque decomposition T=5+ M, into
& dingonslizakle endormorphism E plut a nilpetent endocmorphism N,
sush that SN = NS, This deccmpasilien is the intrinsic versien of the

Jordan forrm. %We prove this next

Definition: An endeomerphisrn TM—M is called "nilpatent” iff for

some integer no» O, TH = 0.

Remark: An endormerphism of san m-dimensional k-wvector space [v]
is nilpotent iff the minirnal leyncmﬂial Wiz power of X, le ff po= KF
where 0 ¢ r ¢ m, iff the characteristic polynemial ¥ = XL Since &
Bimgeralizable endomorphism has sguere free minimal polynomial, =
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rilpotent erdomaorghisrm T is diagonelizable iff u=¥, iff T=0.

Exercise #147): Prove every “strictly cpper diagonal” square
matrin s nilpotent. [e if an msm matrix A hes rerces or and
helow the disgonal, then A™ = 0. |Of course the same hold: for
strictly lower diagana]l matrices |

Mlow we are ready to prove our main result:

Thecrem: If TM—M is an endomorphism of a finite dimensional k-
vectar space, such that 4 factars into linesr fectors cuer k, then T is
uniguely expressible sz a surn T = 3 + W, where 5 is disgonelizeble, [
i= nitpntent, snd where NS = SN, [For ressonz which will sppear in
the next section, the disgennlizeble part = of T is also colled the
"zemi-simple” part)]

proof: [Existencel Tt suffices to express the (upper) Jordar rrstrix
T 83 2uch & sum. We have only to split JT into its diagnnml entries
and ity off disgenal entries. 1e. let {J] be the diagonal matrix
ebteined from JT by replacing all off-disgonal entries by zero, end
let [M] be the strictly upper diagonal rmetrix obtained from JT by
replacing all disgonal entries by zero. Then JT = [S]+IN], and [3) is
disgenel while [N iz nilpotent. Indeed, if ¢ iz the size of the largest
elernentary Jorden klock of JT, then [N = 0. Sinee [S] is disgonal it
represents & dingonalizable endomorphism STWM—+ M, and since [N] iz
nilpatent, 1t represents a nilpotent endernorphism MV -+ M.
Mereover since JT = [S[+IN] then T = S+, To see that SN = NS, it
suffices to show that SNwv - NSv for some hasis v of M. We choose
the Jordan basis {vq, . vm} eszoriated to JT. On sach v in this b i,
F acts ke rmultipliceticn by e scalar, snd scaler multiplication
cormmutes with every endomorphism

It i3 instructive to give an intrinsic description of this decarmposition;
I the minimel polynernial uT = Ty (X-2)73, then the primary
decomposition of M is M = Ty My where My = ker(T-3)T3 is the
‘genseralized h-eigenspace” of T. [The usual a-eigenspace iz of course
ker(T-x)] The diagonalizakle part 5 of T iz the endormnor phism which
equals xl an M. Then W = T-%; in particular N = T-1] on M., Since
each My is & {ususml) s-elgenspece for 5, 5 is diagonalizable, Since I
= T-al on My, the minimal polvnomial of T an My, is ®75. Hence N is
nitpotent on each May, and thus ¥ is nilpetent on M. The argument
that B = NE iz the same as ahove.



13

[Uniqueness] (This proof, by rmermnbers of the class, originated in
Patricic's ides to uze the unipueness of the Jorden form for T)
Lermme: 1§ T = 5+ §, where 31 = F§, & iz diagonalizable, and 1 is
nilpotent, then there iz a basis of M which 1z a Jordan basis
sinultaneously for M, for 5, and for T,

proof: First rmote that if iy is en elgenrsprce far 5 then MMy )c Iy,
e, if v is in My so that Sv = av, then S(Nv} = N{Sv) = N{av) =

a1 lw), so Hlw is egain in My, Since N iz nilpatent on all of M it is alsa
nilpotent on s, and thus its minimeal polynornial on My is a power
aof X, henee splits in k. Thus there 15 & basts of I";'I;., which 1z a Jorden
hasis for M. Since every wvectar in I*"u"];.t iz an cigenvector for &, thus
bazis 12 alzn an elgenkasis, hence 1n particular a Jordan basms, for 5
on Ivly . Since M is nilpotent on !""'-1;.5, ite Jorden matrix in this basis
hes seraes on the disgonal, while the matrix of § has » aleng the
diagfnﬂl and zZeroes F:!sEWhErE." Hence adding the matrices far § and
for N gives s matrix for T on Vi which iz in Joerdean form.
Combining the bases chtained this way for each My, gives a besis for
M which iz & Jordan basis for 5, M end T, a5 claimed. QED Lemma.

It follows from the lemra that for any decompesition of T inta g
sum T = 5+0, with § diaganalizable, I nilpotent, and S = NE, that
E und M are respectively the disgonel end the off diagoenal
endorncrphisms associeted to sorme Jordan matrix of T. Then by the
intrinsic description above af the Jarden decompesition, %zl on
ench generalized eigenspace My of T. Hence 5 = 5, and ft =1-% = 1-3
z W mleo. In particular, T, 5 and Z pll have the sarme characteristic
relynomiei, and the sarme characteristic roots 3, and for each a we

hewe s = My . QED Theorem.

Exercize #14B) m) Show if T = S+N, where 2.} are constructed
fram the Jordan maetrix ss abave, then both 3 N helang te the
cornrmutative ring k[T]. [Hint: It suffices to show that J belangs to
the ring k[T, 1f uT = T(X-ap7L and k[ = TTik[X]/{{X-217i} iz the
natural map, and KX} maps to ((x1], .. [apl, then f{Th= 3]

]E} 1T = S« with 5 diapocnelizable, I} nilpotent, and BN = ﬁﬁ, shoer

Ay

2 M camrnute with T and with the SN in part a). Then show S-5 s

4

disgonalizable, end M- is nilpetent. Deduce g - =, M = M, hence
giving sancother proef of uniqueness of the jordan decomposition.
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Remark: With hind=sight we can see thet we could heve deduced
the exiztence of the jordan form snd the jordan decormpositian mt
the zame time. e piven the minimal polynemnial of T,

oz Ty (X-2)T3, we could decompass the space M by the primary
decornposit.en nte generalized eigenspaces V1 = T My, where M, =
ker(T=a)Ts. Then we can define the map T to he equal to 20 on Ma,
and then define W = T-5. Since on My, N = (T-2) has minirmal,

polynomial X, it follows that MMy — Vs 15 nilpetent. Then following
the steps in our construction of a jordan kasiz for N on ¥y, viclds 5
besis whose ossociated matrix for ¥ s th Jordan form (with =eroes
on the dingonal]l Since every baszis for My puts JF in diegonal form,
thiz seme boasis puts the matrix of T = S«MN 1n Jordan form,

Carrving this cut for all My, gives a Jorden bazs far T. “wWith this
npproach, not using the cyclic decomposition theorem, we rmust
prouve unigueness by some gther method, such ar the one cutiined in
cxercise 137 aboue.

§11) Semni-simple endomorphisms, and "spectral thecrems®
since a diegonal matrix is the simplest, most useful tvpe of metrix,
it 1z helpful tc hawve criteria guarentecing thet an endomorphism is
diagonalizable, ie. thet the Jordan forrm 15 diagenal.  We will prove
reveral such results celled "spectral thearerms™ in this section. Note
that 1t fellows irmmediately from the definition of the matrix
rizogiated to a besiz, that T:M— M 1z disgonalizable iff there is a hasis
for M conszisting af cigenwvectors of T, 1.e. tff there 1s a hasis (v, .. wvrd
nnd scalars A3 i k, such thet far gach j, Tvj = »jvj The following
criterion follows from the theorv of Jorden forrms, butb it i
instructive to give a direct proecf.

Lemma; T M— L it disgonaligeble iff the minimal polynormial of T
fnctars aver k into distinct linear factors.

proof: Suppote the mirnimal polynomiasl p of T factors as follaws,
o= TT{X-n4), with all 2y diztinct, Tt follows from the primery
decormposition lernrna thet if M = ker(T-a;), then ™ = T1; MM;. Sinhce
by definition, each M) has & hasiz of eigenvectors of T, the union of
theze beses is & basiz for V] consisting of eigenwvectors fer T. Hence T

i3 diagonalizakle
Conwersely, if {v{,..,vm! is an sigenbasis for M, &1,..35 are the

distinet gigenvalues, and WV = ker(T-xj) = {the subkspace of M



17

spanned by the eigenvectors in the basis corresponding to i, then
M & TTj Mj. [The "edditicn” map :T1j Mj =1, bix1, .. xe} = Zxg, is
injective aince the set (w1, vt is independent, and sur jective
since the set spans M] Mow let piX) = TTi=1 ¢ (®=3;). Since these
factors commute, far esch | we can write u(T) = gj{THT-2;), for
sorne polynornial gj. Thet is, we can spply (T-aj) first if we chooss,
Since (T-x ;) arnibilates My, then g {TAT-2j) = w(T) annihilates i
for every ), hence pi(T) annihilates M. Thus the minimal polynernial
of T divides w, and since u has distinct linear factors, sa does the
minimal polynomieal of T. [fince M cannot be the product of a
preper subset of the factors MM, 1t Iellews from the first part of the
proof that in fact p = ]TJ: 1 = {K':‘J}'] QED,

The previcus lermnrma 15 an important theoretical eriterian, but in
practice it 15 not elways chbvious whaet the mintmal palynernial of »
maetriz is. Of course we knoew how o cormpute i, by dingonalizing
the characteristic matrix lover kXD, so the question of whether a
glven matrik is disgonelizeble (gver k) iz in principle decidable,
assamIing we can factor the polynominls that ocour in the standard
rmatriy representation for the pair (M, T). Another approach is to
ecmpute the cheracterisiic polynarmal, factor it and find & basis of
ker{T-») for each cheracteristic root % Then T is diegonslizable iff
togcther these eigenbases form a basis for IV, 1.6 iff there are
gltogether dirmi{iV] indeperndent eigenvecters. These criteria for
disgonelizakility armount essentially to saving: try to dingonalize T

L by computing the Jorden form): if you succeed then T wasz
diagonatizable. In some situstions it meakes zense to proceed that
wiy. But if for exormmple we had & rmatrix messuring 100= 100, it
could be challenging either to to find the minimal polynormial by
diagenelizing the characteristic rmetrix, ar to compute the
deterrminont defining the characteristic polyvnomial Wheat we are
tcoking for instesd is a test that will puarantes in advance the
matrix is dingenelizable. This s useful even if vou later carry out
the computatiaons, since if thewy don't work out, yveu know vou made
A mistake. In cases where the computetions are ton large to
ectuslly carry out, these a prieri criteria provide the only hope of
knowing whether the matrix is diagonalizable.

Suppose we want ta show a particular T is diagonalizable over k, by
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proving un eigenbasis exizts, Azsume ¥ splits over k. This is &
necessary condition By the previcus lermmea, and when k 1s
rlgebraically closed it requires no calculation to werify. Then we get
at lesst one sgenvector of T as follows from the next two lemmas:

Lemnma: An endomorphism TM—M of & finite dimensional vector
space M is an isomorphism iff T is injective, iff T iz surjective, iff
ker(T) = {0}, Hf det{T)=[0F.

proof: 1f T is an isornerphistn then it has 8 two sided inverse which
in particwlor is 8N inverse a: & sel Map. Hence T is both injective
and surjective. [f T is injective then certainly ker(T? = {0}
Conversely if ker{T) = 10], then Ty = Tw irnplies T{v-w) = 0, which
implies v-w is in ker{T) = In). Thus v=w and T is injective. i T s
injective, and tv1,...vml is & basis of M, then we claim (Tt ... Twpnt
must be independent. For if ZajlTwi) = 0 is a dependency relation,
them by linearity T{Zajwi) = 0, hence T injective implies Zajvi=0, and
since (vi} are independent all aj =0 Thus TailTvi) = 0 was the
trivial relation, and the set {Tvil is independent. Now since rmore
thean rm uectors in M must be dependent, every vecter in M depends
on the set {Tvi} which is thus s besis of ML 1t follsws thet T is
surjective, since if w is in M, then we ¢an write w = Injlvi =
T{Tajv}. Thus every w in M isin the imege of T. If T i surjective
then for any besis {vi} af M, the ==t {Twj} generates Wi, Then this set
eould he reduced to & basis by removing vectors which depend on
previous ones. Since on the ather hand every basiz of M has exactly
= uectors in it, there are no dependent vectors in the set I Twil, 34
by &1 argurnent reversing that asbowve, T 12 elso injective. The
equivalenee of these properties with det{T) = 0, is assumed from the
theory of deterrminents, (covered in the appcndix). QED,

Lemma: An elerment 3 of k is a root of the characteristic polynormial
w of T, :ff T haz an eigcnvector v corresponding to .

proof: By definition, » is & roct of v iff detfa-I-T) = O, iff {x-I-T) is
not mmvertible, iff ker(a-1-T) z 1D}, off ww = Tv for some v = 0. QED,

5o here is one epproach to proving & map T is diapgonalizable:
Step COne: Prove i factors into hnear factors puer k, true for
example if k = k. Then T has at least one eigenwvecter v1 by the

previeus lermma.
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Step Two. Try to use induetion to cornplete {vi) to an eigenbkasis for
M, by finding an eigenbsesis for the "rest of the space”. In this step
we try to restrict T to en endormnorphism on e lewer dimensional
subspace NMCM, such that M = Mxf{k-vl Unfortunstely there meay
nat be such a subspsce, snd then we are in trouble. The spectral
thecrems consist of varnus conditions guarapteeing such subspaces
exltt, so that we can cornplete the proof. Let's be more precise!

Definition: (i) If T =M iz an endomorphisrm, a subspace NCM is
called "T-invariant’ iff TINJCH.

fil): TM— M s sernisimple” iff for every T-invariant subspece NCM,
there iz same other T-invariant sukbspace LZI¥ such that the
natural additiom NxL—=M [ie. the one teking (x,v) to x+v], is an
1sorrior phism.

Terminology: Two subspeees LLNCT are said to be
"complermentary” iff the addition map NxL—=M iz an isomorphizm,

Exercise #149): Two subspaces N, L €M are complementary iff the
unian of & basis for ¥ with a besis for L gives a baszis for M.

Exercise #150): Frove the map AkZ— k% defined by the matriz A

ol . . .

o 15 not semisimple, by proving the A-invariant subspace
|

spannad by £ hos no A-invariant complement.

[Definition: In genersl, en R module 2 is celled semisimple if every
subrrodule X CZ is v direct factor of 2. 1 iff for every R-submodule
®CZ there is sorme other R=submaodule YC£2 such that the natural
mep XxY—=Z iz an isomor phism. |[Egquivalently, an exact sequence
o K—=Z—=W—0, with Z in the middle, always splits ]

Exarnples: [f k iz any field, every finite dimenszional k-vectar space
V iz k-sernisirmple, since o basgis for a subspace extends to a beaszis for
V. The integers £ do nat form a scemizstmple £-medule, since the
submaodule 2ZC7Z does not split off as & direct factor,

Remerk: & k- endomorphismm T:WM— DM is semni simple ff the pair
{(M_T) iz & semnisimple kIX] rmodule, iff M iz s semisimple k[T] module ]
fermisimplicity iz exsctly the property we need to charscterize
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diagonalizable endomorphizms:
Lernma: An endormerphism TM— M of & finite dirmensional vector

space cver k, is diagonalizeble iff the characteriztic polynamial %
splits 1n k, and T iz semizsimple.

proof: [ifl: Assume T 1z semnisimple and % foctors over k into linear
farters. If % hasz a reot 34 in %, then T hes an gigerivector v, by
the lemme sbove. The subspace Ni spanned by v is T-inwvariant,
hence by hypcthesis there 1z o cormplementary T-invariant subspace
F1<M such tnat M = M1xP1. If we consider the restrictian
T1F1—F1, of T to F1, and chcoose a basis {wz, .., vl af F{, then
with respect to the basis [vq1,w2,. wm) of M, the matrix af T iz &
block metrix, with a7 in the (1.1) positicn as 8 1x1 bleek, and the
matri of the restriction Ty in the lower right hand ecorner as an

{m-1)={m-1) black:

-

A0 Q0
L
] Hence detiX:I-T) = {K~x1)-det{X-[-Tq1).

[a !

Thuz the characteristic polynomial ¥ 1 of T1 divides the
characteristic polynornial ¥ of T, hence %1 slso fectors over k into
linear factors Thus there exists an eigenvector w2 far T1., which iz
altt an eigenvectar for T. Then vi end vy are independent end the
subspace Nz spanned by vl w2 is T- invariant, and thus has a T-
invariant cormnplement FZ2. The sarne argument with block matrices
thows that the restriction Tz, of T te P32, alzo has an eigenvectar 73,

Conitinuing in this way, we get 80 eigenbasis of M. Hence T s
dingonalizable

lenly ifl: Assume T is diagonelizakle, with characteristic polynomisl
* . 1f we calculate ¥ from a disgenel meatrix for T, it i5 chvious that
detiX-T) i & product of linear factors. Mew let NCM be a T-
invariant subspece, and let {wq, _wyr) be u bazis for N, We want to
find & T-invariant complement for N. Nete that any sukspace
tpanned by eigenvestors is T-invariant. Since T is dimgonalizable,
there (s some basis for M consisting of eigenvectors {vi,.. uml.
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Arrange these two sets of vectors az follows:

{vw1,... . wr. Vv1,..vmi, ond starbing at the left end, eliminate any
vector which depends on the vecters to its left, ez we have done
befare. After this is cver we are Jeft with a basis for M, of form
{wi,. ., wr; Vg,...vil, which starts out with the basis [wi,..,wr} of I,
and continues with some eigenvectors {ve,... vyl of T. Then the
subspace P spanned by the eigenvectors {ve, ., vyl 15 & T-invariant

comFElement of N, so T iz sermisimupie.
{QED Prop.

Corollary: If M is & finite dimensienal vector space over kK, and
T~ M an endomarphism whose characteristic palynomial splits in
k, for exarnple if k 15 en algebraically closed ficld sueh as €, then T is
diagonalizehble iff T 12 sernisimple.

St how can we recognize that an endormorphist iz semisimple?
Think of an endormmorphism T of BY that meps the z-axis, for
example, into itself. is there & property that would insure that T
Blso maps the {(x,v) plane into itzelf? If so, then the (x,v) plane
would be 8 complernentary subspace to the 2-axis. We might think
of & rotation about the z-axis. Thit is a good exarnpie of &
semisitnple endomorphism. 1t elwavys preserves angles, hence if v,w,
are perpendicular, then so are Tv Tw. This implies that if I 12 an
invariant subzpece, then so 15 the subspece of vectors perpendicular
to N, and this provides an inveriant complement. Unfortunately,
tne chearacteristic pelynorueal of a rotation deoes not factor inte linear
fartors over B, [& 90U ravaticn of ®9 has cheracteristic palynomial W
= {X-1}X2+1}1 Fo a rotation is semizimple but {usually) not
diagenelizable over B,

This jdes of using 'orthogonal complements' for showing an
cndomaorphism is semmisiinple /s nonstheless the central method uszed
ir all finite dimensional spectral theorerns. We just tranziate the
method into the setting ¢f complex vector speces, where we can alza
nszume the characteristic pelynomis] splits into linear factors. Then
Bs & honus we also pet one theorem that heolds owver K.

Hecall that "metric” concepts from geometry such as length, angles,
end perpendicularity, are provided in vector space theory by means
of "dot preducts', ar "inner products’. Owver €, we meke a variation



22

in the definitiey of the inner product, in grder Lo hawve lengths come
out to be real nurnkers, az follows:

Definition: The "standard hermitien produoct” on €M iz defined
as fellows: 1f 2 = {29, .2m). w = (w1, ., wWm) are vectars in 7, then

we defife (2w = L2iwj. wWe may alza denote <z, w: by z-w.

Rermeark; Recall that the “transpose” of an mxn matrix A is the
nxm matrix At whose colurnns are the rows of &, Then (AB)L =
Btat )f zw are column vectors, then <2 wh = ztw where the

multiplication is matrix rmultiplication, and 2t iz the transpese of 2.

Preperties of (z,w! on I

(i) bi-mdditivity: €2+ U, wW> = (B W + 4 wr,
and 42,w + Uk = {Z,wr + CE,Ul,

{1} (zesqui)- linearity: for a in €, <hg,wr 5 Ro2,wWi, (2w = AT

{iii] hermitian symmetry: (2w = (w20,

{iv) pesitivity: <z 2% i3 real, and if 220, then <22 » 0.

(v} compstibility: Under the real isamporphisrn £ 2 B2, [where
= EJ,:I corresponds to (-...,}t‘j}y‘j,...-}, with 2} = :{Ij“'yﬂ, (B, =
EJ(:J2+yJE) = the squared Euclidean length of the vector 2.

Definitian: We say = and w are orthogonal (ff z-w =0, and we
define the length of z ta ke l2| = (2-2)172 : 0. Note that m vectar is
zera Uff it has length =zero,

“We can define a "hermitian product” on any cormplex vectar space
i, to be a pairing MxM—oC satisfying properties (i)-(iv). We may
call such a space & "herrmitian space’. Every finite dimensional
complex vector spece has such products, since we can choote a hasis
{v1,..vm!, hence an isomorphism of M owith €7, and define =
product on M by composing the isomarphisrm with the standard
product, 1e. by MxM—CM«LIM—C. Jf we define a hermitian
preduct en W this way, then the basis vectars {vj] used in the
isormorphisrn gll have length one, and are all mutually orthogonal
Such & kesis iz called "erthonormael”. Conversely, if M haz a
hermitian preduct, and (vl iz an orthonormal basis of M, then the

assoclated lzcrnorphism M —CT carrje=s the product on M into the
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stendard product on $M. But do erthonormal bases salways exist?

Orthonormel Eeses are easy to find if dimgiM) = 2, as follaws:
Suppose M hes basis (v, w}l. Then for every » in L, {v, w-av] is alza a
basiz. We clairn thet » cen be chosen so that the new basis vectors
{v, w=av] are st least mutually orthogonel This i easy since we
just need (w-av)-w = U, 1le. we reed [wevd -nfuv-u) = 0, which helds
FE w2 [wend/frw). Now that we heave an orthogonal basis, dividing
every basis vector by its length gives on crthonermeal basiz, In
general, use the next EXErcise.

Fxercize * 151 Assume M has 8 hermutian product, snd that
vy ...%g Wsel,...wWrnl is & basis for M over T, zuch theat the first s
banzis vectars {v1,..,vst are rautunlly orthogonel. Frove one can
rhopse ai,..,ag 50 that if wgel = Wl -21V1~ .. "AgVs, ther

[owq, o Ms, Vel wWao s wr) i3 =till & bosis fer M, and the first =+1
vectars {vy....vs, Wg+i} are now mutuelly orthegonal. Deduce that
given any basis Ywi... wyrnt of M, there is an orthonorrnal basis
{v1,...vm} such that for every s the sels fw,. . wst and (v, vl
spen the sarne subspace. In particular a finite dirnensional
hetrrnitian space always has an orthonormal heasis

Terrninology: This procedure for chenging any basis into an
arthoncormal one is often called the "Gram-Schmidt’ pracess,

Remarks: {i) Since the Gram Schmidt process provides a rational
formule, with nen zerc denomineter, for each of the new bas
veCLers Wy in terms of the old ones fwri,..,w=t, it follows that if the
old vectors depend continueusly on some variable then the new ones
depend continuously on thet wvariakle also. This gives one sobatian to
the problern [of Ex. w121] of showing that & pair of continuous
vactar fields a.r on the sphere 3, which ere independent at each
point p of 5, would vield an isomorphism CxlzV, hetween the free
rank two module en the ring € of continuous functions on the
sphere, and the maodule V' of sll continuous vector fields on 5. 1 e,
the meap BCxE 21" taking (f gl fo+gT 18 well defined with irmeage in
¥ since when f,a gt are all continuous, the linear cornbination
forpT is continuous as well. The difficulty 15 to show @ iz invertible;
ie. that for each v in 17, the unique functions f g such that wip =
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fipla{pi+gipivipl for all p in 5. sre continuous. If however we define
the vector field Y by ¥ = v - kg 1t2/fca o) o, then ¥ is ::gntmunua

and {a,¥} are orthegenal and nen zero for all p. Consequently, o =
oflal, and ¥ = /1%, are orthencrmael vector fields Thus for BNy ¥ in

V¥, we cen selve the egquation v = fo+g¥ for {,g by setting f = <v av,
and g = (g 1 which shews that f,g, are continuous. Thus the map
CrxC—V defined by (Fgl—fa+gl would be invertible, implving

TV, [Of course, remember such vectar fields o.17 da nat exisk

and 1n fact T«T and V are net isamorgphic )]

(i} Geng Yu gave ancther solution of Ex. #121 by showing haw to
solve » = forgr directly for the functions f.g as follows: instead of
needing &, t to be perpendicular in order to eliminate one of them by
using the dot product, he cheerved that the cross proaduct will
eliminate cne of them even without perpendiculerity. le since trT

=0z oxg, and a2 fF v = fo+gr,. then vx1 = floxt) and axv =
gloxT), henee § = {yxtidoxt) {gxrt)lonT), and g =
fomxvifoxc){aost){axt).

Exercise #152): Assume M has n hermitian product. Prove that if
{v =1 1 is an orthonormel besiz for M ocver §, and we define

g M— L by LpIiEa.J'vJ'J' = (a1,....8m), then y cerries the dot product
an M inte that on €™ e (EEJUJ]ffEhJUJ) = EaJEJ.

The value of these hermitian products un producing complementary
sukzpaces is based on the concept of "oriheganel complements”.

Definition: If M iz a cornplex vector space with & hermitian
product, end 1f NCM 1z any subset, then define WL = {w in M
<u wer=0 for all v in M.

Terminelogy: For any subset NCM, the subset N CM is called the
arthogonal complernent of N, {in M)

Exercise #103) If M iz = finite dirmensional complex hermitian
space, and if SCM s any subset, then 54 15 & subspece of W, 1f NCM
15 & sukspace, then the addition moap N4 =M 15 en 150rnor phisrm,

Le. N+ 1z a cormplernent to I,

To understarnd the relation hetween endormorphizmes and inner
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products, we need the concept of the “adjoint"” of an endornorphism.

The adjoint of T will be an endornorphistn T such that JTz,wr =

c2, TV for wll 2w in M. We need to show that such an
endomorphizm exists and is unigue, at Jesst in finite dimensions.

The easiest way to do this 12 Lo use an orthonormal basis ta give an
isormorphism (M,e ) = (CFFL, &3 Y pe. an issrnorphism M2LM thet
carries mur hermitien product over into the ususl product on LIRELY
Then we can compute with matrices, le if v, w are column
metrices in O, then (v, w> = wiw. Thus for eny matriz A, we hawe
e wy = LAudh o We want to find 8 matrix B such that ¢Av,we =
¢y Bws = vt Bw. Since (Avit w = vtatsy, this means we want
wtatye - yt Bw. Cbvisusly thiz would be true if B - At [e just et
E = At Thus if &4 is the matrix of an endomarphism T, with respect
to an ortbomormal basis, then the matrix of the adjaint T*, is the
“transpose canjugate” of the matrix for T Thus for a complex
matrix A, "A*" denotes At the adjoint of A with respect to the usual

hermitian product on CM. Unigueness follows from the general fact
that f & vector is orthogonal to every vecter, then it iz crthogonel
to itzelf, hence equnls zern. le. suppose for every w, we had <A ey
= ¢w Bw? = (v,0ws. Then for euery v, <w,(B-Clw> = 0. Thus for v =
(B=Ciwe, we have <[B-Clw (B-Chws = NB-Clw| = 0. Thus (B-Clw = 0.
Since this holds for all w, B=C.

There it alsc an abstrect way to produce the adjeint as an
endormorphism, without using matrices, {but then you still need to
know what the matrin of the edjoint is}. Let's see that way, too.
Definition: For any complex vector space M, define the "dual space”

M* = Homge(M,C).

Lemma: 1f M 15 an m-dimensional vector spece over € with batis
v}, then the hormornorphisms {a)) defined by wjlwil = Dif iz}, and
»ilwil=1, give a basis for M*, calied the oual bamis Lo {vj}. in
particular, M* is alse m ~dirnenzions] over € hence M2=M*,

praat: The {2} are independent, since if Tajrj= 0, then 0 =
(Zejxjilvi) = aiaifwil = &j, for all 3. On the other hand, the {a g}
gemerate M, since if ¢ M—C 15 any hemamorphism, and 1if a5 =
wivjl, then we cleim g = Zmynj. Ta see thiz, eveluate both zides At



£6

vi We get plwil = aj = (Zegk vy}, Bince  and fajnj agree on a
besiz, thev agree everywhere QED,

Exercise #154): If M is & finite dimersional complex vectar space
with a hermitian product, prove that the map ¢M— M* such that
Jlw) = <+, w > is 8 "conjugate-linear” lsornorphism; [W(aw) = glw)],
(Here the dot is just @ place holder for the argument of the function,
ve plwiw) = cu s for every woin M)

Lemmea: Given any endormearphism TM— M, there is a unigue
endomorphizm T* M= st «Tzwy = <2, T W far g.w in VL. If {vj} Is
s arthoncrmal basis of M, then with respect to this basis, the
metrix of T* is the “"conjugate trenzpese’ of the matrix of T: ie. the
(1,j7 entry of [T*] is the camplex ronjugate of the (i) entry of [T]
Froof: Given w in M, the map p M= € defined by gz} = <z w>
belongs ta M* by the previous exercize.  Cormposing with T — M
gives (@eTIM—=C, also in M?. Thus for 2 in M, (geTiz2) = <Tz,w.
Agein by the previeus exercize, there is 8 unigue elernent aof M, call
it T*w, such that (psT) = ¢ - T*w>. Thus (or every v in M, ¢Tw, wi =
o, T'wr MNow we rnust show that the map taking w to T*w defines
s homormorphisrn T* M— M. To show TPlurw) = T*u + T, it
suffices to show that both represzent the same fenction M—&. le in

peneral if <v,x> = ¢w yp for all v, then x=v. [Thus iz becewuse then
cux-yy = 0 for all v including for v = x-vw, whence x-y = 0] Thus it

suffices ta show for every v in M, that v, T*{u+twl = v, T*u +

L, Trwy. Bub ¢ THus + evr,Trws = ¢Tow,ur + <Tw,wy = tTw avws =

¢, TH{uswl. Similarly, to show T*{aw] = aT*{w), it suffices te show
for ali 2 that <2, T*(xw]y = 22T {w)h . But <2, TH*{aw): = cTa,nwr =
2iTe,w> = a2, T (wl = sg,aT*ws Thus T* iz C-linear.

After choosing en erthonarrmal basis of M. T and TY are recprezented
by motrices acting on €M and the herrmitian product on M is
identified with the standerd one an €™M 1f T is a mstrix acting on
CT, and T is its trenspose conjugate, we want to show that

iz, Tty = <Tz,w> for all z,w in CIM, 1§ T = [2ij], 2 = (=), and w -
Twil, then T(z) = (I; ai jgj, ..o} arnjzi). and Thw =5 Eijwi. Thus
<Te,wr = Eifzjﬂjjzj:"r_\?j} = Zjzjliy ujj?-.rill = <z, Ttw>. QED.
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Definition: The mep T* iz called the (hermitian} "adjoint” of T.

Rermark: If M is 2 complex hermitian spege, and TM—M an

cndormor phism, then (T*)* = T

If an endornorphism iz well kehaved with respect to the hermitian
product, then we ¢an uze an inductive argument, as outlined abeove,
to produce not just an eigenbasizs, but an crihonormal eigenbasns.

Definition: &An cndomoerphizsm TM— M of s (finite dimensional)
hermitian space is called "unitarily disgonalizakle” iff M has an
erthenorrmel bazis of sigenvectors for T

Definition: An endomorphism of a hermitian space such that T =

T* iz called hermitian, or self adjoint.

Exercite #*155) (spectral theorem for hermitian aperators):

Frave if T=T* then T 13 unitarily diagonalizable. [Hint: The
orthogonel cormplernent of @ T-inveriant subspace is T-invariant ]

Remark; There are & lot of herrmitian cperators, since all we have

te do to proaduce them on €T is construct & matrix whose transpose
cgunls its cornplex conjugate. ln perticular the entriez above the
dimgoral cepn be any complex numbers snd the disgonal entries can
ke anyv real nurmbers.

There iz another similarly easy and standard megonaiization result:
Definition; An endomeorphismmn TM—+M of a hermitian space is

celied unitary off T* = T ~1,

Exercise #156)(spectral theorem for unitary operators):
{i) Show T is unitarv iff v, w> = «Tw,Tws for all v,w. (ii} Prove

that a unitary operator iz wnitarily diagonalizable.
Definition: A& cornplex matrix P iz called unitary iff P~1 = Pt

Exercise #137); Show s cormmplex matrix F i1z unitary iff itg
columns form an crthonarmal basis of G i its rews alzo form an
orthonormel basis.
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Remark: An endomorphistn TG = CT with metrik &, iz uniterily
disgeralizable [with respect to the usual herrmitien product on €M)
1ff there js & unitary matriz J such that U-1AV iz diegonal.

Definition: The unitary m=rn rmatrices form a group, called the
uniteary group, denoted UJim). The subgroup of unitary rmatrices of
determinant cne, it ealled the special unitary group, SUlm).

Exercize #158); Tell how to determine whether twa elerments of
the group Ulm) are conjugate or not. What abeut in SU{m)?

There is a spectrei theoremn which gencralizes the anes you have
proved tn the previvus exercises, as follows:

Definitian: A "norrmal” operater on a complex hermitian spece M is
gr endornorphism T:W— i such thet TT* = T*T, 1.2. cne that
carnmutes with ity adjoint.

Remark: Hermitien and unitary operators are special ceszes of

normal cperataors

Neormel aperators are the largest class admitting crthonermal baszes
of elgenvectors, as we how show, (thus proving again Exs. 144, 145).

Spectral Thearem for Normmal Operataors:

Theorem: If THM—M iz an endomerphism of a finite dimenzional
herrmitinn space, then T 15 unitarily disgonalizable iIff T 1z normal,
proaf; Assuming T is uniterily dingenelizalkle, the orthonormel
rigenbasiz gives & proeduct preserving isemerphism with ©IR such
that the matrix of T is disgenal. Since the matrix of the ad)joint 1s
the trenspose conjugate of that of T, it 12 elso diagonal. Hence [TI.
und |T*] commute, and thus za do the operators T,T*.

Conwversely, If T is normal, Jet » be any charecteristic root and iy

the corresponding eigenspace. Then we claim T* (WIS My, Thisz is
the same =»3 the proof in the theorem in the previous section en
Jordan decompositiens. le of v is 1in Wy, then TiT*w) = TH(Tw) =
T*(av) = a{T*v). Thus T*w is in My . MNext we claim that
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Tibl; < JC(IV 4, e essume ¥ is N W and w isin Myt then Tv s
i Mo, 500 = «T*uwr = v, Tw, hence Tw s in {My+). Similarly,
T+ 1C{MsL). In particular the adjeint of the restriction of T is
the restriction of the ndjcint. Jo consider the map Ty, > i (W * )
Sipee TT* = T*T on all of M, the seme iz tru= on (M *) Thus the
restriction of T Lo (M *) is norraal, and by induction on the
Jirnension of the kermitin space, (My+) has an erthenormal basis
of eigenvectors of T. Since we Can find & basiz of My and then meake

it grthonormal, by joining these Ywo hases, we get an orthonormal
besis of M consisting of eigenvectors of T. QED.

Exercise *159) (i) If T is hermitian, Tusav, Twpw, and »2 4,

prove (v, wr=0. (Remember 5,14 &re reall
(i) If T is unitary, Tv=hw, Tw= W, and a®p, prave (v,wr=0. (Hint;

first prove [xl = lpl = 1]

Exercise #1060} Prave: (i) 1f 5 iz normal, then for every v, 1Bu| =
13*v|. i3} 1f T ts normel, then Tw = 3w aff T+w = av. [Hint; Show

Wn=Tiwl = O ifF [{a-T*)v| = DI

Spectral theorerm for real tymmetric aperators
& mice surprise is that we get a spectral theorem for real matrices
using the result for hermitian anes, Mote first the follewing:

Lemma: if T=1M ig a hermitian operator, end 3 iz 8 characteristic

root af T, then a is real

proof: We know » is alse an eigenvalue of T so there exists v20 such
that Tv = av. Then xdéw vr = U,V = cTow v = v Twer = cwavlr = 2
0wy, Bince vEl, then < vwpzl, 56 5 = :, and % iz real. [We could
alzo unitarily disgonselize T. Since the matrix of T is then self

adjoint, the disgenal entries are =elf conjugate, hence reall QED.

Caorcllary: The characteristic polynormial of & hermitian opsratar T
heas real coefficients and real roats.
proaf: Compute 1t from a diagonel matrix for T. QED.

Definition: The standard dot preduct on B s given by ox,ve = W
= xty = £ xjyi, where x = {xi), and ¥y = (¥,
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Fropertises of <%,v> op RO

(i) bi-additivity: <x + &, we = <x,wr ¢ by, and G0ty = X b ¢ K,V
(11) bi-linearity: for » in B, <A, W = R<x, ¥ = X, Ay,

(111) symimetry: <,y = v xs.

{iv) pozitivity: (x,x> is real, and if x=20, then <cx > 0.

Definition: If » is in 8™, then [x| = fengthix) = (w3372

We define an "inner product” en any resl vector space M to he g
pairing MxM—= E satisfying the properties shove. Juch an M 1s
called, Irmaginatively, an inner product space. Again any baziz for &
finite dirnensionsl real vector space M defines an isornorphism

= R™ which allews us to transfer the wusual dot product from R
to V. If M has a dot product and 1z finite dimensicneal, the Grarm-
Zehrmidt process gives an erthonormal kasis for M o which
simultaneously dentifies M with FID and identifies the dot product
an I with the ususl one gon B, Given sny endomorphism T:IW— IV,

there 1z a unigque endomorphism T* M= M such that <Tx,v> =
x, Ty for all x v in M. If we identify M withh B by choosing an
orthonorrmal basis, then the essociated meatrix for T* iz the

transpose of the metrix for T.
We could prove these facts exactly ax we did for hermitinn spaces,

Lbut wou can easily do that, 3o for fun let's prove something different.

Definition: If M iz a resl vector space, the space Homp(M, %) = M*
1 the dual space of M.

Mote there is always & natural pairing WsW* = E, the "evaluation”
pairing, <v.@r = glvd Thiz is bi-additive and bilinear, but syrmmetry
and pozitivity do not make sense. By anslopy wath the hermitian
case, an inner product on M owvields an izomaorphisrm of a space with
itz dual, e the rmap M h*® teking w to ¢ -, wr 13 an isamorphism.
But ta what extent iz the conversze true?

Lemmma: If M is s binite dimensicnal, resl vector space sand JoM—-NM*
13 an 1zsomerphism, we get g bi-sdditive, milinear preduct en M by
setting <v, wr = dlvliw) This product iz "'non singular” in the zenze

theat <v,wr = 0 for gall w iff v =2 0, and ¢ wd = 0 for all v iff w = 0,
Fymmetry and positivity de net pecessarily hold.
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proof: The only slightly non trivin) part is to show if wo= 0in M,
then for sorme v, <0 W F 0. Since J 15 80 isorrarphism, L suffices to
chow there is hormomorphism ¢ i 1? such that g{w) = 0. Extend
the set {w) to & basis of M, apd then we cen define 8 AP vl = R
wy Gefining it By way we like on the basis, so let plw) = 1. QED.

Eyarnple: Let W have Even real dimension m = 2N, with basis
{ui,....Jvn,wl,....,wn}. Let. {ui‘,....,un',w:[*,....an*! be the dunal batis
of M*, i.e_vj’{wi} = 0 for ed g, vitlvd = 0 if izj. and wiflwi) = 1.
Ther the mep ¢ M—1M* taking vj 1o wit, and wj 9 -wyt isan
somnorphism. The asscoiated product on M, hes the property thet
SRR 0, for sl 1.3, ﬁuj,wi}:ﬂszi,vj; if i#j, while ¢y wi> = 1 and
ewiwvjy = -1 This product iz nelther sy MMELric nor positive, but it
18 nen singular. This "syrmplectic” poiring mctually eccurs in topelogy
a5 the mntersection pairing of lmops on & compact oriented two
dirnensional surfess, such as & “Riemnann surface or srnoath
complex algebraic curve, of “genus’ . The surface has n holes in it,
the o represent \oops going around the holes in one direction, end
the w; are loops which go ereund the hales in the other direction,
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O, back to wark
Definition: A s}rmmﬁtri::, or self adjoint operaicr on & reel inner

product space M iz an endomorphism TM— M such that T = T*, ie.
sych that ¢T3 = «x, Ty for all ®,vn . On BT owrith the usual
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inner product, such an operator is given by & symmetric matrix, ie.
cne that equals its transpose.

Definition: An endomorphism TM— i of & resl inner product space
15 called arthogonally diemgonalizable :ff M haes an orthonormal

basis of sigenvectors af T

Corollary (spectral thecrem for symmetric cperators):

If TMI—=M ke a real symmetric endarmorphism, then T iz
orthogonnlly disponializakle. [For the converse see Ex. 150 ]

proof: The mein peint is ta thow thet % T splitz over B. Choase an
orthocnormal basis for M sa thet T hes a real symmetric matriv A
Then corsider A as a cornplex rmetrix opersting on C™, hy the
inclusion Matpam(PICMatm s miC). Since A is syrametric and real
A 3z herrmitien, hence all its chearacteristic roots are res], Since A
it the serne whether we consider 4 as a real or & complex matrix,
WA splits over R

Now we can proceed by induction. le if & is any cheracteristic root,
let v be an associated eipenvector. Then for sny w in v+, we have
O = <vwy = ¢av,ws = (To,wr = o, Twer. Hence v+ js a T-invariant
[and thus alse T*-inverient} subspace. The restriction is thus egamn
zelf adjomt, o by induction has an arthanormal basis of
eigenwvectors Adding the unit vectar v/hul to this basis gives an
crthonecrroe; eigenbasis far ail of M, QED,

Definition: &n orthogonal transformation on & real inner product
space ¥ 15 an endornoerphisrm T — M such that T°1 = T, je, such
that «Tw, Ty = < y> for all x,v in M.

Remark: On F™ with the usuel imrer product, such an operator is
given by an orthegonal matrix A, ie one whose calumns form an
ortlencormal basis, equivelently wheose rows form an orthonerrma]

basisz, egquivalently such thet A~1 = At
Defimition: The set of all orthagone] masm real mnatrices forms a

group, the real orthogonal group Olm). The subgroup of elements
of determinant one, is called the special orthogonal group 30{m).

Eermark: An endarmarphism of B™ with matrix & is orthogonally
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dimgochalizeble iff there is an orthogonal metrix P such that P-lAP is
diagonal.

Eermark: &= observed esrlier, a gnl rotetion metrix sbhout the =-
awis in B2 iz an example of en orthogonel matrix which is nat
diagonalizeble cver E.

Exercise #151) a) Prove the ronverse of the previaus corcllary: if
an eperator an a finite dimersionat real inner preducst space 1%
crthogenselly diagonalizeble, then it is self adjoint.

WY For each matrix below, find 8 meatrix, arthogonal if poszible, that
dingonalizes 1t ocver B, or explain why this 12 not possible:

- ! I T |
R T L 27 ... (0 5] ., 0 1 [
£1) X EJ (ii) [1} 3] fiiid l 5 (iv) [_] n-l vl (0 2 @

q 0,
- - [} o3
r 1 o 0 0
Jlli] 0 gl
o1 1 0 0
N D R P I A
{vﬂl]!]]hnﬂ Lo fwiii) [0 0 3 1 O
:[1111‘ ¢ Lo 000ty
- 0 ¢ 0D 1)




