Algebra Qualifying Examination, August 2018

Justify all the calculations and state the theorems you use in your answers. Each problem is worth 10 points. In the solution of a part of a problem, you may use any earlier part of that problem, whether or not you've correctly solved it.

- 1. Let *G* be a finite group whose order is divisible by a prime number *p*. Let *P* be a normal *p*-subgroup of *G* (so $|P| = p^c$ for some *c*).
 - (a) Show that *P* is contained in every Sylow *p*-subgroup of *G*.
 - (b) Let M be a maximal proper subgroup of G. Show that either $P \subseteq M$ or $|G/M| = p^b$ for some $b \le c$.
- 2. (a) Suppose the group *G* acts on the set *X*. Show that the stabilizers of elements in the same orbit are conjugate.
 - (b) Let *G* be a finite group and let *H* be a proper subgroup. Show that the union of the conjugates of *H* is strictly smaller than *G*, i.e.

$$\bigcup_{g \in G} gHg^{-1} \subsetneq G.$$

- (c) Suppose *G* is a finite group acting transitively on a set *S* with at least 2 elements. Show that there is an element of *G* with no fixed points in *S*.
- 3. Let $F \subset K \subset L$ be finite degree field extensions. For each of the following assertions, give a proof or a counterexample.
 - (a) If L/F is Galois, then so is K/F.
 - (b) If L/F is Galois, then so is L/K.
 - (c) If K/F and L/K are both Galois, then so is L/F.
- 4. Let V be a finite dimensional vector space over a field (the field is not necessarily algebraically closed). Let $\varphi: V \to V$ be a linear transformation. Prove that there exists a decomposition of V as $V = U \oplus W$, where U and W are φ -invariant subspaces of V, $\varphi|_U$ is nilpotent, and $\varphi|_W$ is nonsingular.
- 5. Let *A* be an $n \times n$ matrix.
 - (a) Suppose that v is a column vector such that the set $\{v, Av, \dots, A^{n-1}v\}$ is linearly independent. Show that any matrix B that commutes with A is a polynomial in A.
 - (b) Show that there exists a column vector v such that the set $\{v, Av, ..., A^{n-1}v\}$ is linearly independent if and only if the characteristic polynomial of A equals the minimal polynomial of A.
- 6. Let *R* be a commutative ring, and let *M* be an *R*-module. An *R*-submodule *N* of *M* is **maximal** if there is no *R*-module *P* with $N \subsetneq P \subsetneq M$.
 - (a) Show that an R-submodule N of M is maximal iff M/N is a simple R-module: i.e., M/N is nonzero and has no proper, nonzero R-submodules.
 - (b) Let M be a \mathbb{Z} -module. Show that a \mathbb{Z} -submodule N of M is maximal iff #M/N is a prime number.
 - (c) Let M be the \mathbb{Z} -module of all roots of unity in \mathbb{C} under multiplication. Show that there is no maximal \mathbb{Z} -submodule of M.
- 7. Let *R* be a commutative ring.

- (a) Let $r \in R$. Show that the map $r \bullet : R \to R$ by $x \mapsto rx$ is an R-module endomorphism of R.
- (b) We say that r is a **zero-divisor** if $r \bullet$ is not injective. Show that if r is a zero-divisor and $r \ne 0$, then the kernel and image of R each consist of zero-divisors.
- (c) Let $n \ge 2$ be an integer. Show: if R has exactly n zero-divisors, then $\#R \le n^2$.
- (d) Show that up to isomorphism there are exactly two commutative rings R with precisely 2 zero-divisors. You may use without proof the following fact: every ring of order 4 is isomorphic to exactly one of the following: $\mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z}[t]/(t^2+t+1)$, $\mathbb{Z}/2\mathbb{Z}[t]/(t^2-t)$, $\mathbb{Z}/2\mathbb{Z}[t]/(t^2)$.