Algebra Qualifying Exam, Fall 2008

- 1. Let R be a commutative ring and M an R-module, $M \neq \{0\}$.
- Say what it means for M to have a basis.
- ii) Prove that if R is a field, then M has a (not necessarily finite) basis. Indicate where the hypothesis that R is a field is used.
- 2. Prove Gauss's lemma: The product of primitive polynomials in $\mathbb{Z}[x]$ is primitive. (A polynomial is said to be primitive if the greatest common divisor of its coefficients is 1.)
- Let H and K be subgroups of a group G, such that K is normal in G.
- Prove that HK is a subgroup of G.
- ii) Prove that $HK/K \simeq H/(H \cap K)$.
- 4. Let E/F be a Galois field extension, and let K/F be an intermediate field of E/F. Prove that K is normal over F if and only if Gal(E/K) is a normal subgroup of Gal(E/F).
- 5. Let A be an $n \times n$ matrix over \mathbb{C} , such that $A^*A = AA^*$. Prove that A is diagonalizable.
- Classify all groups of order 55.
- 7. Let $M = \mathbb{R}[x]/(x-2)(x+1) \oplus \mathbb{R}[x]/(x-2)(x^2+3)$. Let $T: M \to M$ denote the \mathbb{R} -linear transformation "multiplication by x." Find the following for T:
- i) minimal polynomial ii) characteristic polynomial iii) determinant iv) rational canonical form.
- 8. Let $\zeta_{11}=e^{\frac{2\pi i}{11}}$ (so ζ_{11} is a primitive 11th root of unity).
- i) Prove that $\mathbb{Q}(\zeta_{11})$ is a Galois extension of \mathbb{Q} and describe the Galois group of this extension.
- ii) Find all intermediate fields between \mathbb{Q} and $\mathbb{Q}(\zeta_{11})$ and write each in the form $\mathbb{Q}(\alpha)$ for some α . Prove your answers.