(1) (a) (5 points) State the structure theorem for finitely generated modules over a principal ideal domain.
(b) (5 points) Find the decomposition of the \mathbb{Z}-module M generated by w, x, y, and z, and satisfying the relations

$$
\begin{aligned}
3 w+12 y+3 x+6 z & =0 \\
6 y & =0 \\
-3 w-3 x+6 y & =0 .
\end{aligned}
$$

(2) (10 points) Let R be a commutative ring and let M be an R-module. Recall that for $\mu \in M$ the annihilator of μ is the set $\operatorname{Ann}(\mu)=\{r \in R: r \mu=0\}$. Suppose that I is an ideal in R which is maximal with respect to the property that there exists a nonzero element $\mu \in M$, such that $I=\operatorname{Ann}(\mu)$. Prove that I is a prime ideal in R.
(3) (a) (5 points) Give the definition that a group G must satisfy to be solvable.
(b) (10 points) Show that every group G of order 36 is solvable. Hint: You may assume that S_{4} is solvable.
(4) (15 points) Consider the matrix

$$
A=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

(a) Find the Jordan Normal Form of A regarded as a matrix over \mathbf{C}, the complex numbers.
(b) Find the Jordan Normal Form of A regarded as a matrix over \mathbf{F}_{5}, the field with five elements.
(5) (15 points) Let $F \subset L$ be fields such that L / F is a Galois field extension with Galois group equal to $D_{8}=<\sigma, \tau: \sigma^{4}=\tau^{2}=1, \sigma \tau=\tau \sigma^{3}>$. Show that there are fields $F \subset E \subset K \subset L$ such that E / F and K / E are Galois extensions, but K / F is not Galois.
(6) (15 Points) Let C / F be an algebraic field extension. Prove that the following are equivalent:
(a) Every nonconstant polynomial $f \in F[x]$ factors into linear factors in $C[x]$.
(b) For every (not necessarily finite) algebraic extension E / F there is a ring homomorphism $\alpha: E \rightarrow C$ that is the identity on F. Hint: Use Zorn's lemma.
(7) (10 Points) Let R be a commutative ring.
(a) Say what it means for R to be a unique factorization domain (UFD);
(b) Say what it means for R to be a principal ideal domain (PID);
(c) Give an example of a UFD that is not a PID. Prove that it is not a PID.
(8) (10 Points) Let p and q be distinct primes. Let k denote the smallest positive integer such that p divides $q^{k}-1$. Prove that no group of order $p q^{k}$ is simple.

