Algebra Preliminary Examination

August 2012

1) (10 pts) Let G be a finite group and X be a G-set (i.e, G acts on $X)$
a) Let $x \in X$ and $G_{x}=\{g \in G: g \cdot x=x\}$. Show that G_{x} is a subgroup of G.
b) Let $x \in X$ and $G \cdot x=\{g \cdot x: g \in G\}$. Prove that there is a bijection between elements in $G \cdot x$ and the left cosets of G_{x} in G.
2) (10 pts) Let G be a group of order 30 .
a) Show that G contains normal subgroups of order 3,5 , and 15 .
b) Give presentations and relations for possible G (up to isomorphism).
c) Determine how many groups of order 30 there are up to isomorphism.
3) (10 pts) Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 5. Assume that $f(x)$ has all but two roots in \mathbb{R} (real numbers). Compute the Galois group of $f(x)$ over \mathbb{Q}. Justify your answer.
4) (10 pts) Let $f(x)$ be a polynomial in $\mathbb{Q}[x]$ and K be a splitting field of $f(x)$ over \mathbb{Q}. Assume that $[K: \mathbb{Q}]=1225$. Show that $f(x)$ is solvable by radicals.
5) (10 pts) Let U be an infinite-dimensional vector space over a field $k, f: U \rightarrow U$ a linear map, and $u_{1}, \ldots, u_{m} \in U$ vectors such that U is generated by u_{1}, \ldots, u_{m} and $f^{d}\left(u_{1}\right), \ldots, f^{d}\left(u_{m}\right), d \in \mathbb{N}$.

Prove that U can be written as a direct sum $U \cong V \oplus W$ of two vector subspaces such that
(1) V has a basis consisting of some vectors v_{1}, \ldots, v_{n} and $f^{d}\left(v_{1}\right), \ldots, f^{d}\left(v_{n}\right), d \in \mathbb{N}$.
(2) W is finite-dimensional,

Moreover, prove that for any other such decomposition $U \cong V^{\prime} \oplus W^{\prime}$, one has $W^{\prime} \cong W$.
6) (10 pts) Let R be a ring, and M be an R-module. Recall that M is called Noetherian if any strictly increasing chain of submodules $M_{1} \subsetneq M_{2} \subsetneq M_{3} \subsetneq \cdots$ is finite. Call a proper submodule $M^{\prime} \subsetneq M$ intersection-indecomposable if it can not be written as the intersection of two proper submodules $M^{\prime}=M_{1} \cap M_{2}, M_{i} \subsetneq M$.

Prove that for every Noetherian module M, any proper submodule $N \subsetneq M$ can be written as a finite intersection $N=N_{1} \cap \cdots \cap N_{k}$ of intersection-indecomposable modules.
7) (10 pts) Let k be a field of characteristic 0 , let $A, B \in M_{n}(k)$ be two square $n \times n$ matrices (with coefficients in k) such that $A B-B A=A$. Prove that $\operatorname{det} A=0$.

Moreover, when the characteristic of the field k is two, find a counterexample to the aforementioned statement.
8) (10 pts) Prove that any nondegenerate matrix $X \in M_{n}(\mathbb{R})$ ($n \times n$ matrices with real coefficients) can be written as $X=U T$, where U is an orthogonal matrix in $M_{n}(\mathbb{R})$ and T is an upper triangular matrix in $M_{n}(\mathbb{R})$.

