Algebra Preliminary Examination August 2012

1) (10 pts) Let G be a finite group and X be a G-set (i.e, G acts on X)

a) Let $x \in X$ and $G_x = \{g \in G : g \cdot x = x\}$. Show that G_x is a subgroup of G.

b) Let $x \in X$ and $G \cdot x = \{g.x : g \in G\}$. Prove that there is a bijection between elements in $G \cdot x$ and the left cosets of G_x in G.

- 2) (10 pts) Let G be a group of order 30.
- a) Show that G contains normal subgroups of order 3, 5, and 15.
- b) Give presentations and relations for possible G (up to isomorphism).
- c) Determine how many groups of order 30 there are up to isomorphism.

3) (10 pts) Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 5. Assume that f(x) has all but two roots in \mathbb{R} (real numbers). Compute the Galois group of f(x) over \mathbb{Q} . Justify your answer.

4) (10 pts) Let f(x) be a polynomial in $\mathbb{Q}[x]$ and K be a splitting field of f(x) over \mathbb{Q} . Assume that $[K:\mathbb{Q}] = 1225$. Show that f(x) is solvable by radicals.

5) (10 pts) Let U be an infinite-dimensional vector space over a field $k, f: U \to U$ a linear map, and $u_1, \ldots, u_m \in U$ vectors such that U is generated by u_1, \ldots, u_m and $f^d(u_1), \ldots, f^d(u_m), d \in \mathbb{N}$.

Prove that U can be written as a direct sum $U \cong V \oplus W$ of two vector subspaces such that

- (1) V has a basis consisting of some vectors v_1, \ldots, v_n and $f^d(v_1), \ldots, f^d(v_n), d \in \mathbb{N}$.
- (2) W is finite-dimensional,

Moreover, prove that for any other such decomposition $U \cong V' \oplus W'$, one has $W' \cong W$.

6) (10 pts) Let R be a ring, and M be an R-module. Recall that M is called *Noetherian* if any strictly increasing chain of submodules $M_1 \subsetneq M_2 \subsetneq M_3 \subsetneq \cdots$ is finite. Call a proper submodule $M' \subsetneq M$ intersection-indecomposable if it can not be written as the intersection of two proper submodules $M' = M_1 \cap M_2, M_i \subsetneq M$.

Prove that for every Noetherian module M, any proper submodule $N \subsetneq M$ can be written as a finite intersection $N = N_1 \cap \cdots \cap N_k$ of intersection-indecomposable modules.

7) (10 pts) Let k be a field of characteristic 0, let $A, B \in M_n(k)$ be two square $n \times n$ matrices (with coefficients in k) such that AB - BA = A. Prove that det A = 0.

Moreover, when the characteristic of the field k is two, find a counterexample to the aforementioned statement.

8) (10 pts) Prove that any nondegenerate matrix $X \in M_n(\mathbb{R})$ $(n \times n \text{ matrices with real coefficients})$ can be written as X = UT, where U is an orthogonal matrix in $M_n(\mathbb{R})$ and T is an upper triangular matrix in $M_n(\mathbb{R})$.