Instructions: Complete all 8 problems. Each problem is worth 10 points. In multi-part problems, you may assume the result of any part (even if you have not been able to do it) in working on subsequent parts.

- (1) (a) Using Sylow theory show that every group of order 2p where p is a prime is not simple.
 - (b) Classify all groups of order 2p and justify your answer. For the non-abelian group(s), give a presentation by generators and relations.
- (2) Let G be a group of order 60 whose Sylow-3 subgroup is normal.
 - (a) Prove that G is solvable.
 - (b) Prove that the Sylow-5 subgroup is also normal.
- (3) (a) Define what it means for a finite extension field E over F to be a Galois extension.
 (b) Determine the Galois group of f(x) = x³ − 7 over Q . [Justify your answer carefully.]
 - (c) Find all subfields of the splitting field of $f(x) = x^3 7$ over \mathbb{Q} .
- (4) Let K be a Galois extension of the field F, and let $F \subset E \subset K$ be an inclusion of fields. Let G be the Galois group of K over F, and H that of K over E. Suppose that H contains $N_G(P)$, where P is a p Sylow subgroup of G (p is a prime). Prove that $[E:F] \equiv 1 \mod p$.
- (5) Consider the following 3×3 -matrix.

$$B = \begin{pmatrix} 1 & 3 & 3\\ 2 & 2 & 3\\ -1 & -2 & -2 \end{pmatrix}$$

- (a) Find the minimal polynomial of B.
- (b) Find a 3×3 matrix J in Jordan canonical form such that $B = PJP^{-1}$ where P is an invertible matrix.
- (6) Let R be a ring with 1 and M a left R-module. If I is a left ideal of R, define

$$IM = \{\sum_{finite} a_i m_i | a_i \in I, m_i \in M\}$$

to be the collection of all finite sums of elements of the form am, where $a \in I$ and $m \in M$

- (a) Prove that IM is a submodule of M.
- (b) Let M and N be left R-modules, I a nilpotent left ideal of R and $f: M \to N$ an R-module homomorphism. Prove that if the induced homomorphism $\overline{f}: M/IM \to N/IN$ is surjective then so is f.

(7) Let A be an $n \times n$ matrix over the real numbers \mathbb{R} . One can make \mathbb{R}^n into a $\mathbb{R}[x]$ module by letting f(x).v = f(A)(v) for $f(x) \in \mathbb{R}[x]$ and $v \in \mathbb{R}^n$. Assume that the
module \mathbb{R}^n has the following direct sum decomposition:

$$\mathbb{R}^n \cong \frac{\mathbb{R}[x]}{\langle (x-1)^3 \rangle} \oplus \frac{\mathbb{R}[x]}{\langle (x^2+1)^2 \rangle} \oplus \frac{\mathbb{R}[x]}{\langle (x-1)(x^2-1)(x^2+1)^4 \rangle} \oplus \frac{\mathbb{R}[x]}{\langle (x+2)(x^2+1)^2 \rangle}.$$

- (a) Determine the elementary divisors and invariant factors of A.
- (b) Determine the minimal polynomial of A.
- (c) Determine the characteristic polynomial of A.
- (8) Let A be an $n \times n$ matrix over \mathbb{C} such that the group generated by A under multiplication is finite. Prove that $Tr(A^{-1}) = \overline{Tr(A)}$, where $\overline{Tr(A)}$ denotes the complex conjugate of the trace of A.