ALGEBRA QUALIFYING EXAM, JANUARY 2009

(1) Let G be a finite group, and $H<G$ a subgroup. Carefully show that the number of subgroups of G that are conjugate to H divides $|G|$.
(2) Let G be a group of order p^{3} for some prime number p. Carefully show that either G is abelian or $|Z(G)|=p$.
(3) Let R be a commutative ring containing a field k and suppose that $\operatorname{dim}_{k} R<\infty$.
(a) Let $a \in R$. Show that there exist $n \in \mathbb{N}$ and $c_{0}, \ldots, c_{n-1} \in k$ such that $a^{n}+$ $c_{n-1} a^{n-1}+\cdots+c_{1} a+c_{0}=0$.
(b) Let $a \in R$. Suppose that there exist $n \in \mathbb{N}$ and $c_{0}, \ldots, c_{n-1} \in k$ with $a^{n}+c_{n-1} a^{n-1}+$ $\cdots+c_{1} a+c_{0}=0$. Show that if $c_{0} \neq 0$, then a is a unit in R.
(c) Let $a \in R$. Suppose that there exist $n \in \mathbb{N}$ and $c_{0}, \ldots, c_{n-1} \in k$ with $a^{n}+c_{n-1} a^{n-1}+$ $\cdots+c_{1} a+c_{0}=0$. Show that if a is not a zero divisor in R, then a is invertible.
(4) Let R be a commutative domain.
(a) Define what it means for an element $r \in R, r \neq 0$, to be irreducible.
(b) Let P be a maximal ideal. Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial of positive degree in $R[x]$. Assume that $a_{0}, \ldots, a_{n-1} \in P$, and that $a_{0} \notin P^{2}$. (Recall that P^{2} denotes the ideal of R generated by elements of the form $a b$, with $a, b \in P$.) Show that $f(x)$ is irreducible in $R[x]$.
(c) (Extra credit only.) What happens if R is not assumed to be a domain?
(5) Let R be a commutative ring. Let M be an R-module.
(a) Define what a torsion element of M is.
(b) Give an example of a ring R with a cyclic R-module M with M infinite, and such that M contains a non-trivial torsion element m. (Justify why m is torsion.)
(c) Show that if R is a domain, then the subset of elements of M that are torsion is an R-submodule of M. Clearly show where the hypothesis that R is a domain is used.
(6) Let V denote the \mathbb{R}-vector space $\mathbb{R}[x] /\left((x-2)\left(x^{2}+3\right)\right)$. The \mathbb{R}-vector space V can be considered in a natural way as an $\mathbb{R}[x]$-module.
(a) Let $L: V \rightarrow V$ denote the linear map defined as the 'multiplication-by- x map. Write down a basis in which L is in rational canonical form. Write down the matrix that represents L in that basis.
(b) Does L have a Jordan canonical form? If yes, find it, if not, explain why not.
(c) Let $T: V \rightarrow V$ denote the linear map defined as the 'multiplication-by- x^{2} map. Write down a basis in which T is in rational canonical form. Write down the matrix that represents T in that basis.
(7) Let F be a field and let $f(x) \in F[x]$.
(a) Define what is a splitting field of $f(x)$ over F.
(b) Let F now be a finite field with q elements. Let E / F be a finite extension of degree $n>0$. Exhibit an explicit polynomial $g(x) \in F[x]$ such that E / F is a splitting of $g(x)$ over F. Fully justify your answer.
(c) Show that the extension E / F in (b) is a Galois extension.
(8) Let $f(x)=x^{3}-7$ in each of the following parts:
(a) Let K be the splitting field for f over \mathbb{Q}. Describe the Galois group of K / \mathbb{Q} and the intermediate fields between \mathbb{Q} and K. Which intermediate fields are not Galois over \mathbb{Q} ? Justify when needed.
(b) Let L be the splitting field for f over \mathbb{R}. What is the Galois group L / \mathbb{R} ? Justify when needed.
(c) Let M be the splitting field for f over \mathbb{F}_{13}, the field with 13 elements. Describe the Galois group of M / \mathbb{F}_{13}. Justify when needed.

