Complex Analysis Qualifying Exam - Spring 2021

All problems are of equal weight. Please arrange your solutions in numerical order even if you do not solve them in that order. Show work and carefully justify/prove your assertions.

1. Let z_{1} and z_{2} be two complex numbers.
(a) Show that $\left|z_{1}-\bar{z}_{1} z_{2}\right|^{2}-\left|z_{1}-z_{2}\right|^{2}=\left(1-\left|z_{1}\right|^{2}\right)\left(1-\left|z_{2}\right|\right)$.
(b) Show that if $\left|z_{1}\right|<1$ and $\left|z_{2}\right|<1$, then $\left|\frac{z_{1}-z_{2}}{1-\bar{z}_{1} z_{2}}\right|<1$.
(c) Assume that $z_{1} \neq z_{2}$. Show that $\left|\frac{z_{1}-z_{2}}{1-\bar{z}_{1} z_{2}}\right|=1$ if only if $\left|z_{1}\right|=1$ or $\left|z_{2}\right|=1$.
2. Evaluate the integral $\int_{-\infty}^{\infty} \frac{e^{i \xi x}}{\cosh (x)} d x$ where $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$ and ξ is real.

Hint: Use an appropriate rectangular contour containing $[-R, R]$ as one side.
3. Suppose $f(z)$ is entire and there exist $A, R>0$ and natural number N such that

$$
|f(z)| \geq A|z|^{N} \text { for }|z| \geq R
$$

Show that (a) f is a polynomial and (b) the degree of f is at least N.
4. Let $f(z)=u+i v$ be an entire function such that $u(x, y)=\operatorname{Re}(f(x+i y))$ is a polynomial in x, y. Show that $f(z)$ is a polynomial in z.
5. Let $f(z)$ be a holomorphic map of the open unit disk \mathbb{D} into itself. Show that for any two points z and w in \mathbb{D},

$$
\left|\frac{f(w)-f(z)}{1-\overline{f(w)} f(z)}\right| \leq\left|\frac{w-z}{1-\bar{w} z}\right|
$$

and the inequality is strict for $z \neq w$ except when f is linear fractional transformation mapping the unit disk into itself.
6. Suppose $\left\{f_{n}(z)\right\}_{n=1}^{\infty}$ is a sequence of holomorphic functions on the unit disk \mathbb{D}, and $f(z)$ is a holomorphic function on the unit disk \mathbb{D}. Show that the following are equivalent.
(a) $\left\{f_{n}(z)\right\}$ converges to $f(z)$ uniformly on compact subsets in \mathbb{D}.
(b) $\int_{|z|=r}\left|f_{n}(z)-f(z)\right||d z|$ converges to 0 if $0<r<1$.
7. Let R be the intersection of the right half plane and the outside of the circle $\left|z-\frac{1}{2}\right|=\frac{1}{2}$ with the line segment [1.2] removed, i.e.

$$
R=\left\{z: \Re e z>0 \text { and }\left|z-\frac{1}{2}\right|>\frac{1}{2}\right\} \backslash\{z=x+i y: 1 \leq x \leq 2 \text { and } y=0\}
$$

Find a conformal map from R to the upper half plane.

