Complex Analysis Qualifying Exam — Spring 2022

Show work and carefully justify/prove your assertions. For example, if you use a theorem that has a name, mention the name. Arrange your solutions in numerical order even if you do not solve them in that order.

- 1. (10 points) Use complex analysis to compute $I = \int_0^\infty \frac{\cos ax \cos bx}{x^2} dx$, where *a* and *b* are positive constants. Hint: Start by considering $\frac{\cos ax \cos bx}{x^2}$ as the real part of an appropriate complex valued function.
- 2 (10 points) Let $f(z) = \sum_{n=0}^{\infty} c_n z^n$ be analytic and one-to-one in |z| < 1 with real part u(z) and imaginary part v(z). For 0 < r < 1, let D_r be the disc |z| < r. Prove that the area A_r of $f(D_r)$ is finite and is given by the following formula:

$$\iint_{f(D_r)} du dv = \pi \sum_{n=1}^{\infty} n |c_n|^2 r^{2n}.$$

- 3. (10 points) Let $a_n(z)$ be a sequence of analytic functions on an open set Ω such that $\sum_{n=0}^{\infty} |a_n(z)|$ converges uniformly on its compact subsets. Show that $\sum_{n=0}^{\infty} |a'_n(z)|$ also converges uniformly on compact subsets of Ω .
- 4. (10 points) Show that if f(z) and g(z) are holomorphic functions on an open and connected set Ω such that f(z)g(z) = 0, then either f(z) or g(z) is identically zero.
- 5. (10 points) Give the Laurent expansion of $f(z) = \frac{1}{z(z-1)}$ in each of the following two annuli

(i)
$$\{z : 0 < |z| < 1\}$$
, (ii) $\{z : 1 < |z|\}$

- 6. (10 points) Find a conformal map from the intersection D of |z i| < 2 and |z + i| < 2 to the upper half plane.
- 7. (10 points) Show that z = 0 is an essential singularity for the function $f(z) = e^{\frac{1}{\sin z}}$.