Algebra Preliminary Exam

Monday, September 16, 1996

Problems 1 and 2 are worth 20 points; the others are 12 points each.

- 1. State the following theorems, defining the terms in brackets:
 - (a) The Sylow Theorem ("three parts") [Sylow p-subgroup]
 - (b) The Spectral Theorem for a self-adjoint operator on a finite-dimensional vector space over C; also give its interpretation for Hermitian matrices [Hermitian inner product, self-adjoint operator, Hermitian matrix, unitary matrix]
 - (c) The Fundamental Theorem of Galois Theory [separable, normal, and galois extensions of fields; galois group]
 - (d) The Structure Theorem for finite abelian groups, and for finitely generated modules over a PID; explain why the former is a corollary of the latter. [free module, torsion module]
 - (e) The Fundamental Theorem on Symmetric Polynomials. [elementary symmetric function]
- 2. Quick examples: Justify your answers briefly.
 - (a) Evaluate the following determinants:

1	2	3	4	1	2	2^2	2^{3}
2	3	4	5	1	3	3^2	3^{3}
3	4	$ \begin{array}{c} 3 \\ 4 \\ 5 \\ 6 \end{array} $	6	1	4	2^{2} 3^{2} 4^{2} 5^{2}	4^{3}
4	5	6	7	1	5	5^2	5^{3}

- (b) List the 5 isomorphism types of groups of order 8; for each, give a property (or properties) which distinguishes it from the others
- (c) Find the eigenvalues and eigenvectors of the following matrix, and determine its Jordan Canonical form:

$$\begin{pmatrix} 12 & 25 \\ -4 & -8 \end{pmatrix}$$

- (d) Let ζ be a primitive 25th root of unity. Determine the degree of the extension $\mathbb{Q}(\zeta)/\mathbb{Q}$, and describe its Galois group.
- (e) Let G be a group with a (right) action on a group N. Define the semidirect product $N \times G$.
- 3. Let V and W be finite-dimensional vector spaces over a field K; let V^* be the dual space of V, and $\operatorname{Hom}(V, W)$ be the space of K-vector space homomorphisms from V to W. Show that $V^* \otimes_K W$ is canonically isomorphic to $\operatorname{Hom}(V, W)$.

- 4. Prove that every finite group of prime-power order is solvable.
- 5. Let R be a commutative ring with unit. Show that for any $t \in R$ which is not nilpotent, there is a prime ideal of R which does not contain any power of t. Use this to show that the intersection of all prime ideals of R is precisely the set of nilpotent elements of R [which is called the nilradical of R].
- 6. Let R be a Noetherian ring; prove that the polynomial ring R[x] is also Noetherian.
- 7. (a) Explain what it means for a polynomial to be solvable by radicals.
 - (b) Consider $f(x) = x^7 16x + 10$: find its Galois group (over \mathbb{Q}), and determine whether or not f(x) is solvable by radicals.