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1. Euclidean geometry and Archimedes.
Problem (a) The volume of the sphere

A(z) = area of cross-section at height z
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Volume = / A(z) dz=/ m(a“ — 27) dz
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How did Archimedes deduce the formula for
the volume of a ball?

Hint: Cavalieri’s principle.

We get the same cross-sectional area at height
z if we construct a cylinder of base a and height
2a and cut out a (double-) cone of the same
dimensions.



Then the volume of the cylinder less the vol-
ume of the cone is
1

4
2 2 3
ma“(2a) — 2-—ma“(a) = —ma>,
(20) ~ 2+ Zma®(a) = -
as we expected.

Problem (b) Another standard integral calcu-
lus problem: The volume of the bicylinder.

What is the volume of the region bounded by
the two orthogonal cylinders

a:2-|—z2=a2 and y2-|—22:a2?




This is again an easy application of Cavalieri's
principle: comparing to a sphere, the cross-
section at height z is a square circumscribing

the corresponding cross-section of a sphere of
radius a.

Thus, the cross-sectional areas are in a ratio
of 4 /7 and the volume of the bicylinder is

4 4 16

= —mad = ""a3.

T 3 3

(This is approx. 1.27 times the volume of the
ball of radius a.)



Problem (c) My favorite extra-credit multi-
ple integration problem: The volume of the

tricylinder.

What is the volume of the region bounded by
the three orthogonal cylinders

932+y2 = a2, sc2+z2 = a2, and y2—|—z2 =
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Now, how would the Greeks have found the

volume??



Consider the portion in the first octant. We
have a cube and three ‘caps’ that are parts
of a truncated bicylinder.

Vi

By comparing each of these to the correspond-
ing segment of a ball, we can use Archimedes'’
approach to find the volume.




Volume of truncated ball
— na2(a—h) — g(a3 —nd)

= %(a — h)2(2a + h)

With h = a/+/2, this is
T3 44/2 — 5
3" 242

T herefore, volume of truncated blcyllnder

7r3 2f

= ﬁ(4\/§ —5)a’




Adding the volume of the inner cube, the vol-
ume of the tricylinder is equal to

(av2)3 4+ 2v2(4v2 — 5)a3 = [8(2 — V/2)a® .

(This is approximately 1.19 times the volume
of the ball of radius a.)

Challenge: Do this by calculus, by either single-
or double-integration!



2. Affine geometry. A recent Putnam exam
contained a three-dimensional version of the
following problem:

Given three points chosen at random on the
unit circle, what is the probability that the
center of the circle lies in the interior of the
triangle they form?
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Approach (a) Straightforward calculus solu-
tion.

Without loss of generality, put A at (1,0), set
B = (cos#,sinf@) and C = (cos¢,sing).

We see O lies inside AABC precisely when
o (m,m+0).

That is, assuming C is chosen at random, the
probability that O is inside the triangle is /2.
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We now average over all possible positions of
B:
1 27 6 1

Prob (O inside AABC) = — —df = —.
2w JO0 27 2

(Try solving the 3-D problem in an analogous
fashion! Good luck!)

Approach (b) Try linear algebra (actually
“affine linear algebra”). We say the vectors
a,b,c € R? are affinely independent if

It is an easy exercise to check that
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When a # b, every point on the line through
a and b can be expressed as an affine linear

combination xza + yb, where z 4+ y = 1.

b

q=a+y(b- a)
= (1-y)a+yb==za+yb

Moreover, we see that when = > 0 the point is
on the a-side of b and when y > 0 the point is
on the b-side of a. In particular, points where
z,y > 0 correspond to the line segment ab.

x>0

\b
y>0
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Likewise, when a, b, c are affinely independent,
every point in R2 can be written as an affine
linear combination

ra+yb+z2c, where z4+y+2=1.

And a point is in the interior of the triangle
with vertices a, b, and c if and only if x > O,
y >0, and z > 0.

q = zatyb+tzc
a x>0, y>0,and z>0

b

Now we're back to our question: When is O in

the interior of AABC?
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Precisely when we can write

0 = xa+yb+4+z2c with x>0,y >0, and z> 0.

Since we have, correspondingly,

0 =xz(—-a) +y(—b) + 2(—c),

this means that O will also be in the interior of
the triangle with vertices at — A, — B, and —C.
On the other hand, we have

0 (—z)(—a) + yb + zc
0 = za+ (—y)(—b)+ zc
0 = zat+yb+ (—2)(—c),
and so on, so that O will be in the exterior of

the remaining six triangles with vertices +A,
+B, and +C'.

In summary, given three points A, B, and C
chosen at random on the unit circle, of the 8
possible triangles with vertices

+A, +B, +C,
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there will be precisely 2 with O in the interior.

Since the antipodal map is an isometry of the
circle, the probability that a point lies in an in-
terval is equal to the probability that its antipo-
dal point lies in the antipodal interval. Thus,
choosing three points at random on the unit
circle, the probability that the origin is in the
interior of the triangle they determine is

2 1

8 4
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3. Projective geometry. Here is a question
from classical linear algebra.

Given three distinct lines in the plane in para-
metric form:

El : X = aj-+svy
lo . X = ap—+4tvo
63 : X = az-+ uvsy,

what is a criterion for the three lines to be
concurrent, i.e., to have a point in common?

N f

/ e

Approach (a) First, we solve for the point of
intersection, P, of /1 and /5. since

svqy —tvo —= ao —az,
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Cramer's rule tells us that
_ D(ap —aj,vo)
S — )
D(vy,v2)
where D(x,y) denotes the determinant of the
2 x 2 matrix with column vectors x,y € R2.

In order for ¢3 to pass through P, we must
have

SV —uvz — az —ajp,
so Cramer’s rule gives, once again,

_ D(az —a;,v3)

D(V17V3)
Setting these two expressions for s equal, we
have

D(a3,v3)D(v1,v2) + D(ap, vo)D(vs,vy)
= D(ai1,v3)D(vy1,v2) + D(a1,vo)D(vs,vy).
But we can rewrite the right-hand side as
D (a1, D(v1,v2)vz + D(v3,v1)va) ,
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which in turn is equal to

—D(ay, D(vp,v3)vy) = —D(ay,vy1)D(va,v3).

To see this, we need the

Lemma. For any three vectors in R3, we have

D(vo,v3)vy + D(v3,v1)vo + D(vy,vp)vy = 0.

Finally, we have derived the criterion for con-
currence:
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Proof of Lemma.

D(vo,v3)vy + D(v3,v1)vo + D(vy,vp)vy = 0.
Possible proof: use Cramer’s Rule again. But,
back to affine linear combinations: if

q=za+yb+z2c, with z4+y4+2z=1,
then
__signed area Aqgbc

~ signed area Aabc’
so, letting q =0, we get

etc.,

T

__signed area AObc %D(b,c)

Y~ Signed area Aabe
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Approach (b) Suppose instead we are given
cartesian equations of the lines:

lp: oxz+Biy+v1 = O
by  oaox+ Boy+ o
/3. azx+ B3y + 3

Now it is much easier to give the condition for
concurrence.

|
o O

Consider the corresponding planes through the
origin in R3:

P1: oz +Bry+mz = 0
Pr: apx+Poyt+ 2z = O
P3: azx+O3y+ 3z = O.

Their respective intersections with the plane
z = 1 recover the lines /;.
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ax ¥ Byyty =0

e

[
e

ox H PyH yzy= 0

The planes intersect in at least a line (and so
the corresponding lines will intersect in at least
a point) provided

a1 B1 7
ar B 2 | =0.
a3z B3 73

Expanding in cofactors along the third column,
we can recover our earlier equation with a bit
of thought. We have

(ai, B;) = p(v;),
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where p(x,y) = (—y,x) gives rotation of the
plane 7 /2 counterclockwise, and

vi = —(a;,8;) -a; = —p(v;) -a; = D(a;,v;) .

P(X) y

\ (aj, Bi) = p(v;)

The last ingredient is merely that, for example,

a1 B
an B>

since p preserves signed area. So we get

y1D(vo,v3) +v2D(v3,v1) +v3D(vy,vp) =0,

just as before.

= D(p(v1),p(v2)) = D(v1,v2)
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What underlies this result is projective duality:
lines in a projective plane are concurrent if and
only if the corresponding points in the dual
projective plane are collinear.

4. A bit more projective geometry, leading to
algebraic geometry.

Naive definition: Two plane sets C and C’ are
projectively equivalent if we can choose two
planes H, H' and a point P so that, viewing
from P, C' ¢ H' is the image of C C H sub-
tended in H'.

24



For example, standard conics—circles, ellipses,
parabolas, and hyperbolas—are projectively equiv-

alent.

The circle we get by slicing a cone with a hori-
zontal plane above the vertex is seen on various

viewing planes as ...

- N
. .

¢
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For something different: If we view a circle
from a point P on the circle, it turns into a
line (with a point “at infinity”).

(z,y)

Projecting from the point P = (—1,0) we ob-
tain
A |
y

and so we obtain
(ty—1)°+y°=1== (t*+ 1)y° — 2ty = 0.

27



Thus,

1 —¢2 ot
Tr =
14 ¢2

This is the famous rational parametrization of
the circle. Here are two important applica-
tions:

Application (a) “Rationalizing substitution”

/ do _ 5
3cosfd+ 4sinb
Substituting £ = cosf, y = sin#, and noticing
that ¢t = tan(6/2), we obtain df = 2dt/(14t2),
and the integral becomes
2 dt

3+ 8t—3t2°
Since —3t° 4+ 8t + 3 = —(3t + 1)(¢t — 3), this is
easily evaluated.
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Application (b) This gives us an explicit for-
mula for all Pythagorean triples. Triples of in-
tegers (X,Y,Z) with X2+Y?2 = Z2 correspond
to pairs of rational numbers

X Y
r = — and Yy = —
Z Z

with z2 + y2 = 1. Any such rational point
corresponds to a rational number t.

Obvious query: Can we similarly generate in-
tegral solutions of X" 4+ Y"™ = Z"? (Can we
parametrize the algebraic curves z" 4+ ¢y" =1
by rational functions when n > 37

The theory of algebraic curves tells us that a
nonsingular (“smooth” ) plane curve of degree
n has genus g =(n—1)(n—2)/2, and a curve
can be parametrized by rational functions only
when g = 0. (Technical point: All of this is
most easily done working over C.)
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5. Integral and differential geometry (via topol-
ogy).

Poincaré, Hopf, and Morse proved (in gener-
alizing to higher dimensions) that the Euler
characteristic of a surface S is given by

source T

saddle +

saddle +

saddle +

saddle +

sink 4+

30



(When S has genus g, we get x(S) =2 —2g.)

The original Gauss-Bonnet Theorem related
this to the geometry of a closed surface:

1
S =—/KdA.
x(S) ol

Here K is Gaussian curvature, a measure of
how the Gauss map v of S distorts area.

What do we do if we have just a piece of sur-
face?

31



A warm-up result: For a (piece of) curve C C
R2, we have

Crofton’s formula:
length(C) = %/#(C N 2) de

o<

¢
/

\>< #(CN0=3

(Here d¢ is an obvious measure on the space
of affine lines in the plane, invariant under the
group of motions.) This baby result was re-
ally the beginnings of geometric probability,
leading, for example, to a probabilistic “com-
putation” of w. (Buffon needle problem)

There are analogous results in higher dimen-
sions (e.g., Cauchy).
32



We have analogously: for any (piece of) sur-
face S C R3:

lLLocal Gauss-Bonnet formula:

/SKdA:/,u(L)dL,

where L is a line through the origin, dL is the
invariant measure on the space of lines through
the origin, and

(L) = #(sources) — #(saddles) 4+ #(sinks)

when we project onto L.

Similarly, if we just count how many critical
points there are for projection onto L (without
regard to their nature), we get

JL1Klda = [|u(L)dr.

Total curvature has been an interesting in-
variant for studying knottedness (Fary-Milnor,
Chern-Lashof).
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Shameless self-promotion:

T. Shifrin, Abstract Algebra: A Geometric
Approach, Prentice Hall, 1996.

T. Shifrin and Malcolm Adams, Linear
Algebra: A Geometric Approach, W. H. Free-
man, 2001.

T. Shifrin, Multivariable Mathematics: Linear
Algebra, Multivariable Calculus, and Manifolds,
used as text for MATH 3500—-3510 at UGA, to
appear.

Less biased recommendation:

C. H. Edwards, Jr., The Historical Develop-
ment of the Calculus, Springer Verlag, 1979.
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