1. Prove that if \(f : [0, 1] \to \mathbb{R} \) be continuous, then
\[
\lim_{k \to \infty} \int_0^1 kx^{k-1} f(x) \, dx = f(1).
\]

2. Let \(m_* \) denote Lebesgue outer measure on \(\mathbb{R} \).
 (a) Prove that for every \(E \subseteq \mathbb{R} \) there exists a Borel set \(B \) containing \(E \) with the property that
 \[
 m_*(B) = m_*(E).
 \]
 (b) Prove that if \(E \subseteq \mathbb{R} \) has the property that
 \[
 m_*(A) = m_*(A \cap E) + m_*(A \cap E^c)
 \]
 for every set \(A \subseteq \mathbb{R} \), then there exists a Borel set \(B \subseteq \mathbb{R} \) such that \(E = B \setminus N \) with \(m_*(N) = 0 \).
 Make sure you address the case when \(m_*(E) = \infty \).

3. (a) Prove that if \(f \in L^1(\mathbb{R}) \), then
 \[
 \lim_{N \to \infty} \int_{|x| \geq N} |f(x)| \, dx = 0,
 \]
 and demonstrate that it is not necessarily the case that \(f(x) \to 0 \) as \(|x| \to \infty\).
 (b) Prove that if \(f \in L^1([1, \infty)) \) and decreasing, then \(\lim_{x \to \infty} f(x) = 0 \) and in fact \(\lim_{x \to \infty} xf(x) = 0 \).
 (c) If \(f : [1, \infty) \to [0, \infty) \) is decreasing with \(\lim_{x \to \infty} xf(x) = 0 \), does this ensure \(f \in L^1([1, \infty)) \)?

4. Let \(f \in L^1(\mathbb{R}) \) and \(g \in L^1(\mathbb{R}) \). Argue that \(H(x, y) = f(y)g(x - y) \) defines a function in \(L^1(\mathbb{R}^2) \) and deduce from this that
 \[
 f \ast g(x) = \int_{\mathbb{R}} f(y)g(x - y) \, dy
 \]
 defines a function in \(L^1(\mathbb{R}) \) that satisfies
 \[
 \|f \ast g\|_1 \leq \|f\|_1 \|g\|_1.
 \]

5. Compute the following limit and justify your calculations:
 \[
 \lim_{n \to \infty} \int_0^n \left(1 + \frac{x^2}{n} \right)^{-(n+1)} \, dx.
 \]

6. (a) Show that \(L^2([0, 1]) \subseteq L^1([0, 1]) \) and \(\ell^1(\mathbb{Z}) \subseteq \ell^2(\mathbb{Z}) \).
 (b) For \(f \in L^1([0, 1]) \) define
 \[
 \hat{f}(n) := \int_0^1 f(x)e^{-2\pi inx} \, dx.
 \]
 Prove that if \(f \in L^1([0, 1]) \) and \(\{\hat{f}(n)\} \in \ell^1(\mathbb{Z}) \), then
 \[
 S_N f(x) = \sum_{|n| \leq N} \hat{f}(n) e^{2\pi inx}
 \]
 converges uniformly on \([0, 1]\) to a continuous function \(g \) that equals \(f \) almost everywhere.
 \textit{Hint: One possible approach is to argue that if \(f \in L^1([0, 1]) \) with \(\{\hat{f}(n)\} \in \ell^1(\mathbb{Z}) \), then \(f \in L^2([0, 1]) \).}