ANALYSIS QUALIFYING EXAM - JANUARY 2021

Problem 1. Let (X, \mathcal{M}, μ) be a measure space, and let $E_n \in \mathcal{M}$ be a measurable set for $n \geq 1$. Let $f_n = \chi_{E_n}$, the indicator function of the set E_n . Prove that

(a) $f_n \to 1$ uniformly, if and only if there exists $N \in \mathbb{N}$ such that $E_n = X$ for all $n \ge N$.

(b) $f_n(x) \to 1$ for almost every x, if and only if

$$\mu\big(\bigcap_{n\geq 0}\bigcup_{k\geq n}\left(X\backslash E_k\right)\big)=0$$

Problem 2. Calculate the limit:

$$L := \lim_{n \to \infty} \int_0^n \frac{\cos(x/n)}{x^2 + \cos(x/n)} \, dx$$

Justify each step of your calculations!

Problem 3. Let (X, \mathcal{M}, μ) be a finite measure space. Let $\{f_n\}_{n=1}^{\infty} \subseteq L^1(X, \mu)$ and $f \in L^1(X, \mu)$ such that $f_n(x) \to f(x)$ as $n \to \infty$ for almost every $x \in X$.

Prove that for every $\varepsilon > 0$ there exist M > 0, and a set $E \subseteq X$, such that $\mu(E) \leq \varepsilon$ and $|f_n(x)| \leq M$ for all $x \in X \setminus E$ and all $n \in \mathbb{N}$.

Problem 4. Let f and g be Lebesgue integrable on \mathbb{R} . Let $g_n(x) = g(x - n)$. Prove that

$$\lim_{n \to \infty} \|f + g_n\|_1 = \|f\|_1 + \|g\|_1.$$

Problem 5. Let $f_n \in L^2[0,1]$ for $n \in \mathbb{N}$. Assume that

- (a) $||f_n||_2 \le n^{-51/100}$, for all $n \in \mathbb{N}$, and
- (b) \hat{f}_n is supported in the interval $[2^n, 2^{n+1}]$, that is

$$\hat{f}_n(k) = \int_0^1 f_n(x) e^{-2\pi i \, kx} \, dx = 0$$
, for $k \notin [2^n, 2^{n+1}]$.

Prove that $\sum_{n=1}^{\infty} f_n$ converges in the Hilbert space $L^2([0,1])$.

(Hint: Plancherel's identity may be helpful.)

Problem 6. Let $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a measurable function, and for $x \in \mathbb{R}$ define the set

$$E_x := \{ y \in \mathbb{R} : m(\{ z \in \mathbb{R} : f(x, z) = f(x, y) \}) > 0 \}.$$

Show that

$$E := \bigcup_{x} \{x\} \times E_x$$

is a measurable subset of $\mathbb{R} \times \mathbb{R}$.

(Hint: consider the measurable function h(x,y,z):=f(x,y)-f(x,z).)