Real analysis qualifying exam, January 2018

1. Define

$$E := \{ x \in \mathbb{R} : \left| x - \frac{p}{q} \right| < q^{-3} \text{ for infinitely many } p, q \in \mathbb{N} \}.$$

Prove that m(E) = 0.

2. Let $f_n(x) := \frac{x}{1+x^n}, x \ge 0.$

a) This sequence of functions converges pointwise. Find its limit. Is the convergence uniform on $[0, \infty)$? Justify your answer.

- b) Compute $\lim_{n\to\infty} \int_0^\infty f_n(x) \, dx$.
- 3. Let f be a nonnegative measurable function on [0, 1]. Show that

$$\lim_{p \to \infty} \left(\int_{[0,1]} f(x)^p \, dx \right)^{\frac{1}{p}} = \|f\|_{\infty}$$

- 4. Let $f \in L^2([0,1])$ and suppose that $\int_{[0,1]} f(x) x^n dx = 0$ for all integers $n \ge 0$. Show that f = 0 a.e.
- 5. Suppose $f_n, f \in L^1, f_n \to f$ a.e. and $\int |f_n| \to \int |f|$. Show that $\int f_n \to \int f$.