Real analysis qualifying exam, January 2018

1. Define

$$
E:=\left\{x \in \mathbb{R}:\left|x-\frac{p}{q}\right|<q^{-3} \text { for infinitely many } p, q \in \mathbb{N}\right\} .
$$

Prove that $m(E)=0$.
2. Let $f_{n}(x):=\frac{x}{1+x^{n}}, x \geq 0$.
a) This sequence of functions converges pointwise. Find its limit. Is the convergence uniform on $[0, \infty)$? Justify your answer.
b) Compute $\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x$.
3. Let f be a nonnegative measurable function on $[0,1]$. Show that

$$
\lim _{p \rightarrow \infty}\left(\int_{[0,1]} f(x)^{p} d x\right)^{\frac{1}{p}}=\|f\|_{\infty}
$$

4. Let $f \in L^{2}([0,1])$ and suppose that $\int_{[0,1]} f(x) x^{n} d x=0$ for all integers $n \geq 0$. Show that $f=0$ a.e.
5. Suppose $f_{n}, f \in L^{1}, f_{n} \rightarrow f$ a.e. and $\int\left|f_{n}\right| \rightarrow \int|f|$. Show that $\int f_{n} \rightarrow \int f$.
