(1) Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers such that $x_{1}>0$ and

$$
x_{n+1}=1-\left(2+x_{n}\right)^{-1}=\frac{1+x_{n}}{2+x_{n}} .
$$

Prove that the sequence $\left\{x_{n}\right\}$ converges, and find its limit.
(2) a) Let $F \subset \mathbb{R}$ be closed, and define

$$
\delta_{F}(y):=\inf _{x \in F}|x-y| .
$$

For $y \notin F$, show that

$$
\int_{F}|x-y|^{-2} d x \leq \frac{2}{\delta_{F}(y)} .
$$

b) Let $F \subset \mathbb{R}$ be a closed set whose complement has finite measure, i.e. $m(\mathbb{R} \backslash F)<$ ∞. Define the function

$$
I(x):=\int_{\mathbb{R}} \frac{\delta_{F}(y)}{|x-y|^{2}} d y
$$

Prove that $I(x)=\infty$ if $x \notin F$, however $I(x)<\infty$ for almost every $x \in F$. (Hint: investigate $\int_{F} I(x) d x$.)
(3) Recall that a set $E \subset \mathbb{R}^{d}$ is measurable if for every $\epsilon>0$ there is an open set $U \subset \mathbb{R}^{d}$ such that $m^{*}(U \backslash E)<\epsilon$.
(a) Prove that if E is measurable then for all $\epsilon>0$ there exists an elementary set F, such that $m(E \Delta F)<\epsilon$. Here $m(E)$ denotes the Lebesgue measure of E, a set F is called elementary if it is a finite union of rectangles and $E \Delta F$ denotes the symmetric difference of the sets E and F.
(b) Let $E \subset \mathbb{R}$ be a measurable set, such that $0<m(E)<\infty$.

Use part (a) to show that,

$$
\lim _{n \rightarrow \infty} \int_{E} \sin (n t) d t=0
$$

(4) Let f be a measurable function on \mathbb{R}. Show that the graph of f has measure zero in \mathbb{R}^{2}.
(5) Consider the Hilbert space $\mathcal{H}=L^{2}([0,1])$.
(a) Prove that of $E \subset \mathcal{H}$ is closed and convex then E contains an element of smallest norm. Hint: Show that if $\left\|f_{n}\right\|_{2} \rightarrow \min \left\{f \in E:\|f\|_{2}\right\}$ then $\left\{f_{n}\right\}$ is a Cauchy sequence.
(b) Construct a non-empty closed subset $E \subset \mathcal{H}$ which does not contain an element of smallest norm.

