Topology Qualifying Exam Aug 2020

- (1) Prove that a compact subset of a Hausdorff space is closed, and give a counterexample showing that the Hausdorff assumption is necessary.
- (2) Recall that the **one-point compactification** \bar{X} of a topological space X is given by the following.
 - As a set $\overline{X} = X \bigsqcup \{\infty\}$, where ∞ is a point.
 - A subset is open in \overline{X} if it is either an open set of X, or is of the form $U \bigsqcup \{\infty\}$ where $U \subset X$ has the property that X U is compact.

Prove that the one-point compactification of \mathbb{R}^n is homeomorphic to the sphere S^n .

- (3) Consider two 2-spheres Σ_1 and Σ_2 with their respective north and south poles N_1, N_2 and S_1, S_2 . Take the quotient space $A := \Sigma_1 \sqcup \Sigma_2 / \sim$, where $N_1 \sim N_2$ and $S_1 \sim S_2$. Describe all covering spaces of A.
- (4) Show that the torus is a double cover of the Klein bottle. Show also that the double covering map is not homotopic to the constant map.
- (5) Show that there is no continuous map $f: S^2 \to S^2$ such that $f \circ f$ has degree -1.
 - Find a continuous map $f : T^2 \to T^2$ so that the induced map $(f \circ f)_* : H_1(T^2) \to H_1(T^2)$ is given by multiplication by -1.
- (6) Let $A \subset X$ be a pair of topological spaces. Recall that a map $r: X \to A$ is called a *retraction* if r(a) = a for all $a \in A$. Assume such a retraction exists below.
 - If $X = D^2$, show that $H_i(A) = 0$ for i > 0 and $H_0(A) = \mathbb{Z}$.
 - If X is an annulus, list all possible $H_i(A)$ for $i \ge 0$. Prove that your list is exhaustive.
- (7) For a topological space X, the suspension S(X) is defined as $([0,1] \times X)/\sim$, where $(c,x) \sim (c,x)$ for either c = 0 or c = 1.
 - Prove that $S(S^n)$ is homeomorphic to S^{n+1} .
 - Find $H_1(S(T^2))$.

(8) For a map $f: X \to Y$, define the **graph of** f as

$$G(f) := \{ (x, y) \in X \times Y : y = f(x) \}.$$

Let $f: S^1 \to S^1$ be a continuous map with degree d. Find, in terms of d, the relative homology $H_*(S^1 \times S^1, G(f))$.